glados.no/ntnu/tfe4152/summary/summary.md

124 lines
3.3 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

---
title: "Oppsumering av TFE4152"
description: "Stort sett formler i faget TFE4152, høsten 2020."
date: 2020-12-16
math: true
---
## Konstander
| Symbol | Verdi | Kommentar |
| ---: | :--- | :---|
| $q$ | $1.602\cdot 10^{-19}\text{C}$ | |
| $k$ | $1.38\cdot 10^{-23}\text{J}\cdot\text{K}^{-1}$ | |
| $n_i$ | $1.1\cdot 10^{16}\text{bærere}/\text{m}^3$ | Ved $T=300\text{ K}$ |
| $\epsilon_0$ | $8.854\cdot 10^{-12}\text{F}/\text{m}$ | |
| $K_{ox (oksid)}$ | $\cong 3.9$ | |
| $K_{Si (silikon)}$ | $\cong 11.8$ | |
{: .table }
## Revers-forspent diode
$$ C_j = \frac{C_{j0}}{\sqrt{1+\frac{V_R}{\Phi_0}}} $$
$$ Q = 2 C_{j0} \Phi_0 \sqrt{1 + \frac{V_R}{\Phi_0}} $$
$$ C_{j0} = \sqrt{\frac{q K_{Si} \epsilon_0}{2 \Phi_0} \frac{N_D N_A}{N_D + N_A}} $$
$$ C_{j0} = \sqrt{\frac{q K_{Si} \epsilon_0 N_D}{2 \Phi_0}}, \text{ hvis } N_A \gg N_D$$
$$ \Phi_0 = \frac{k_B T}{q}\ln\left(\frac{N_A N_D}{n_i}\right) $$
## Normalt forspent diode
$$ I_D = I_S \exp{\frac{V_D}{V_T}} $$
$$ I_D = A_D q n_i^2 \left(\frac{D_n}{L_n N_A}+\frac{D_p}{L_p N_D}\right) $$
$$ V_T = \frac{k T}{q} \approx 26\text{mV, ved } T=300\text{ K} $$
### Småsignal for forspent diode
![Småsignal Diode](figures/diode.svg)
$$r_d = \frac{V_T}{I_D} $$
$$C_T = C_d + C_j $$
$$ C_d = \tau_T \frac{I_D}{V_T} $$
$$ C_j \approx 2 C_{j0} $$
$$ \tau_T = \frac{L_n^2}{D_n} $$
## Transisor i triodeområdet
Dette gjelder for $V_{GS} > V_{tn}$, $V_{DS} \leq V_\text{eff}$.
$$ I_D = \mu C_{ox} \left(\frac{W}{L}\right) \left[(V_{GS} - V_{tn})V_{DS} - \frac{V_{DS}^2}{2}\right] $$
$$V_\text{eff} = V_{GS} - V_{tn} $$
$$ V_{tn} = V_{\text{tn-}0} + \gamma\left(\sqrt{V_{SB} + 2\Phi_F} - \sqrt{2\Phi_F}\right) $$
$$ \Phi_F = \frac{k T}{q}\ln\left(\frac{N_A}{n_i}\right) $$
$$ \gamma = \frac{\sqrt{2 q K_{Si} \epsilon_0 N_A}}{C_{ox}} $$
$$ C_{ox} = \frac{K_{ox} \epsilon_0}{t_{ox}} $$
### Småsignal av transistor i triodeområdet
![Transistor i triode](figures/triode.svg)
$$ r_{ds} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)V_\text{eff}} $$
$$ C_{gd} = C_{gs} \frac{1}{2}W L C_{ox} + WL_{ov}C_{ox} $$
$$ C_{sb} = C_{db} = \frac{C_{j0} \left(A_s + \frac{WL}{2}\right)}{\sqrt{1 + \frac{V_{sb}}{\Phi_0}}} $$
## Transistor i aktivt område
Dette gjelder bare for $V_{GS} > V_{tn}$, $V_{DS} \geq V_\text{eff}$.
$$ I_D = \mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 \underbrace{\left[1 + \lambda(V_{DS} - V_\text{eff})\right]}_\text{body-effect} $$
$$ \lambda \propto \frac{1}{L\sqrt{V_{DS} - V_\text{eff} + \Phi_0}} $$
$$ V_{tn} = V_{tn\text{-}0} - \gamma\left(\sqrt{V_{SB} + 2\Phi_F} - \sqrt{2\Phi_F}\right) $$
$$ V_\text{eff} = V_{GS} - V_{tn} = \sqrt{\frac{2 I_D}{\mu_n C_{ox} \frac{W}{L}}} = V_{DS, \text{sat.}} $$
### Småsignal for transistor i aktivt område
![Transistor i aktivt område](figures/active.svg)
$$\begin{aligned}
g_m &= \mu_n C_{ox} \frac{W}{L} V_\text{eff} \\
&= \sqrt{2 \mu_n C_{ox} \frac{W}{L} I_D} \\
&= \frac{2 I_D}{V_\text{eff}}
\end{aligned}
$$
$$
\begin{aligned}
g_s &= \frac{\gamma g_m}{2 \sqrt{V_{SB} + |2\Phi_F|}}\\
&\approx 0.2 g_m
\end{aligned}
$$
$$ r_{ds} = \frac{1}{\lambda I_{D\text{, sat.}}} \approx \frac{1}{\lambda I_D} $$
$$\lambda = \frac{k_{r_{ds}}}{2 L \sqrt{V_{DS} - V_\text{eff} + \Phi_0}} $$
$$ k_{r_{ds}} \sqrt{\frac{2 K_{Si} \epsilon_0}{q N_A}} $$
$$ C_{gs} = \frac{2}{3} W L C_{ox} + WL_{ov} C_{ox} $$
$$ C_{gd} = WL_{ov} C_{ox} $$