Files
glados.no/ntnu/tfe4152/summary/summary.md
2020-12-16 17:12:59 +01:00

3.3 KiB

title, description, date, math
title description date math
Oppsumering av TFE4152 Stort sett formler i faget TFE4152, høsten 2020. 2020-12-16 true

Konstander

Symbol Verdi Kommentar
q 1.602\cdot 10^{-19}\text{C}
k 1.38\cdot 10^{-23}\text{J}\cdot\text{K}^{-1}
n_i 1.1\cdot 10^{16}\text{bærere}/\text{m}^3 Ved T=300\text{ K}
\epsilon_0 8.854\cdot 10^{-12}\text{F}/\text{m}
K_{ox (oksid)} \cong 3.9
K_{Si (silikon)} \cong 11.8
{: .table }

Revers-forspent diode

C_j = \frac{C_{j0}}{\sqrt{1+\frac{V_R}{\Phi_0}}} Q = 2 C_{j0} \Phi_0 \sqrt{1 + \frac{V_R}{\Phi_0}} C_{j0} = \sqrt{\frac{q K_{Si} \epsilon_0}{2 \Phi_0} \frac{N_D N_A}{N_D + N_A}}  C_{j0} = \sqrt{\frac{q K_{Si} \epsilon_0 N_D}{2 \Phi_0}}, \text{ hvis } N_A \gg N_D \Phi_0 = \frac{k_B T}{q}\ln\left(\frac{N_A N_D}{n_i}\right)

Normalt forspent diode

 I_D = I_S \exp{\frac{V_D}{V_T}}  I_D = A_D q n_i^2 \left(\frac{D_n}{L_n N_A}+\frac{D_p}{L_p N_D}\right) V_T = \frac{k T}{q} \approx 26\text{mV, ved } T=300\text{ K}

Småsignal for forspent diode

Småsignal Diode

r_d = \frac{V_T}{I_D} C_T = C_d + C_j C_d = \tau_T \frac{I_D}{V_T} C_j \approx 2 C_{j0} \tau_T = \frac{L_n^2}{D_n}

Transisor i triodeområdet

Dette gjelder for V_{GS} > V_{tn}, V_{DS} \leq V_\text{eff}.

I_D = \mu C_{ox} \left(\frac{W}{L}\right) \left[(V_{GS} - V_{tn})V_{DS} - \frac{V_{DS}^2}{2}\right] V_\text{eff} = V_{GS} - V_{tn}  V_{tn} = V_{\text{tn-}0} + \gamma\left(\sqrt{V_{SB} + 2\Phi_F} - \sqrt{2\Phi_F}\right) \Phi_F = \frac{k T}{q}\ln\left(\frac{N_A}{n_i}\right) \gamma = \frac{\sqrt{2 q K_{Si} \epsilon_0 N_A}}{C_{ox}} C_{ox} = \frac{K_{ox} \epsilon_0}{t_{ox}}

Småsignal av transistor i triodeområdet

Transistor i triode

r_{ds} = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)V_\text{eff}} C_{gd} = C_{gs} \frac{1}{2}W L C_{ox} + WL_{ov}C_{ox} C_{sb} = C_{db} = \frac{C_{j0} \left(A_s + \frac{WL}{2}\right)}{\sqrt{1 + \frac{V_{sb}}{\Phi_0}}}

Transistor i aktivt område

Dette gjelder bare for V_{GS} > V_{tn}, V_{DS} \geq V_\text{eff}.

I_D = \mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 \underbrace{\left[1 + \lambda(V_{DS} - V_\text{eff})\right]}_\text{body-effect} \lambda \propto \frac{1}{L\sqrt{V_{DS} - V_\text{eff} + \Phi_0}} V_{tn} = V_{tn\text{-}0} - \gamma\left(\sqrt{V_{SB} + 2\Phi_F} - \sqrt{2\Phi_F}\right) V_\text{eff} = V_{GS} - V_{tn} = \sqrt{\frac{2 I_D}{\mu_n C_{ox} \frac{W}{L}}} = V_{DS, \text{sat.}} 

Småsignal for transistor i aktivt område

Transistor i aktivt område

$$\begin{aligned} g_m &= \mu_n C_{ox} \frac{W}{L} V_\text{eff} \ &= \sqrt{2 \mu_n C_{ox} \frac{W}{L} I_D} \ &= \frac{2 I_D}{V_\text{eff}} \end{aligned}



\begin{aligned} g_s &= \frac{\gamma g_m}{2 \sqrt{V_{SB} + |2\Phi_F|}}\ &\approx 0.2 g_m \end{aligned}



$$ r_{ds} = \frac{1}{\lambda I_{D\text{, sat.}}} \approx \frac{1}{\lambda I_D} $$

$$\lambda = \frac{k_{r_{ds}}}{2 L \sqrt{V_{DS} - V_\text{eff} + \Phi_0}} $$

$$ k_{r_{ds}} \sqrt{\frac{2 K_{Si} \epsilon_0}{q N_A}} $$

$$ C_{gs} = \frac{2}{3} W L C_{ox} + WL_{ov} C_{ox} $$

$$ C_{gd} = WL_{ov} C_{ox} $$