glados.no/courses/tfe4146/summary/summary.md

333 lines
8.9 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

---
title: "Oppsumering av TFE4146"
description: Oppsummering av faget TFE4146 høsten 2020.
math: true
permalink: /:path
date: 2020-11-20
---
{% include utilities/toc.html %}
## Grunnleggende om halvledere
### Historie
* **1830** - Mekanisk
* **1944** - Elektromekanisk
* **1946** - Releer og radiorør
* **1948** - Transistor
* **1958** - Første IC
* **1971** - Første mikroprosessor
* **2020** - Der i er i dag med nanoelektronikk
Moores lov forutser hvor mange transistorer det er plass til per areal.
Skal dobles hver 18-24 måneder.
### Halvledere
![Oversikt over halvledere, metaller og isolatorer](./figures/conductivity.png)
### Atomer og elektroner
#### Uskarphetsrelasjonen
$$ \Delta x \cdot \delta p_x \geq \frac{\hbar}{2} $$
#### Paulti prinsippet
> To like fermioner kan ikke ha den samme kvantetilstanden.
#### Schrödingers likning
$$ - \frac{\hbar ^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t) = -\frac{\hbar}{j}\frac{\hbar ^2}{2m}\frac{\partial \Psi(x,t)}{\partial t} $$
##### Løsninger
$$ \psi(x) = Ae^{\pm ikx} \quad E= \frac{\hbar^2 k^2}{2m}$$
Partikkel i en "boks".
![Partikkel i en boks](figures/particleBox.png)
![Tette bånd](figures/tetteBonds.png)
### Effektiv masse
$$ m^* = \frac{\hbar ^2}{\frac{d^2 E}{d k^2}} $$
Ser på krumningen til energien i k-rommet.
Høy kromming er liten effektiv masse, og vica versa.
### Intrisisk materiale
Inneholder bare en type materiale.
$$ n = p = n_i $$
Der $n$ er tettheten av frie elektroner i lednignsbånd (CB), målt i $\text{cm}^{-3}$.
$p$ er tettheten av hull i valensbåndet (VB), målt i $\text{cm}^{-3}$.
Og $n_i$ er den intrisiske elektrontettheten, målt i $\text{cm}^{-3}$.
![Intrisisk materiale](figures/intrinsic.png)
### Ekstrinsiske materialer
Disse er intrinsiske materialer som er dopet med et donor eller akseptor materiale.
I Si er det typisk As (Arsenik, donor), eller B (Bor, akseptor).
#### n-type
$$ n_0 \gg p_0,n_i $$
Der $n_0$ er elektrontettheten i termisk likevekt.
#### p-type
$$ p_0 \gg n_0,n_i $$
Der $n_0$ er elektrontettheten i termisk likevekt.
### Elektron-Hull-par i intrinsiske materialer
Elektroner og hull genereres og rekominerer kontinuerlig.
$$ r_i = g_i $$
$$ r_i = \alpha n_0 p_0 = \alpha n_i^2 = g_i $$
![Bærertetthet](figures/dos.png)
### Bærertetthet
Hvordan beskrive hvordan $e^-$ og $h^+$ er fordelt i CB og VB.
$$ \delta n(E) = N(E) \cdot f(E) \cdot \delta E $$
Der
* $\delta n(E)$ er tettheten av $e^-$ i CB.
* $N(E)$ er mulige av elektrontilstander
* $f(E)$ er Fermi-Dirac sannsynlighetsfordelingen
* $\delta E$ er energidifferansen vi ser på. I tilfellet over, er det $E_g$.
Finnes flere typer
* Isotropisk båndstruktur
* Anisotropisk båndstruktur
$$ N_C(E) = 4\pi \left(\frac{2m^*}{h^2}\right)^{\frac{3}{2}}\cdot E^\frac{1}{2} $$
#### Fermi-Dirac
$$ f(E) = \frac{1}{1 + \exp{\frac{E - E_F}{k_B T}}} $$
##### Fermi-Dirac ved forskjellige dopinger
![Fermi-Dirac ved forskjellige dopinger](figures/fermiDirac.png)
I et intrinsisk materiale ligger fordelingen midt i båndapet.
For en n-type doping vil fordelingen bevege seg mot CB, og i p-type vil den bevege seg mot VB.
#### Frie elektroner og hull
Ved å se på "summen" av elektrontilstander, $ N_C $ og sannsynligheten for å finne dem der.
$$ \int_{0}^\infty f(E)N_C(E) dE $$
Gir oss en likning for frie elektroner i termisk likevet.
$$ n_0 = \underbrace{2\left(\frac{2\pi m_n^* k_B T}{h^2}\right)^\frac{3}{2}}_{N_c} e^{-\frac{E_C - E_F}{k_B T}} $$
Som forkortet, og på samme måte for $p_0$
$$ n_0 = N_c e^{-\frac{E_C - E_F}{k_B T}}, \qquad N_c = 2\left(\frac{2\pi m_n^* k_B T}{h^2}\right)^\frac{3}{2} $$
$$ p_0 = N_v e^{-\frac{E_F - E_V}{k_B T}}, \qquad N_v = 2\left(\frac{2\pi m_p^* k_B T}{h^2}\right)^\frac{3}{2} $$
#### Noen resultater
$$ n_0 p_0 = N_c N_v e^{-\frac{E_g}{k_B T}} $$
$$ n_i p_i = N_c N_v e^{-\frac{E_g}{k_B T}} $$
Som sammen med $n_i = p_i$, gir følgende:
$$ n_0 p_0 = n_i^2 $$
Dette gir oss igjen
$$ n_0 = n_i e^{-\frac{E_F - E_i}{k_B T}} $$
$$ p_0 = n_i e^{-\frac{E_i - E_F}{k_B T}} $$
#### Noen eksempler på bærertetthet
![DOS](figures/carrierDensity.png)
### Drift av ladningsbærere
Drifter i alle retninger, ikke noen som er preferert. Litt som en biesverm.
Dersom det påtrykkes et elektrisk felt, vil partiklene fremdeles drifte, men de vi ha en netto bevegelse i en retning.
Elektroner vil bevege seg mot feltet, og hull vil bevege seg med.
Strømmen er beskrevet av følgende:
$$ J_x = q(n\mu_n + p\mu_p)E_x $$
Der
$$ \mu_n = \frac{q \tau}{m_n^*} \quad \text{og} \quad \mu_p = \frac{q \tau}{m_p^*} $$
### Hall-effekten
Halleffekten kan brukes til å se på mobiliteten til majoritetsladningsbærerene. F.eks. hull i p-type er majoritetsladningsbærere.
![Hall-effekten](figures/HallEffect.png)
Vi bruker Lortenz kraften, gitt som under:
$$ \vec{F} = q\left(\vec{E} + \vec{v}\times\vec{B}\right)$$
Ved påtrykt strømm, $J_x$ og magnetfelt $B$ vil det settes opp et elektrisk felt mellom kontaktene A og B.
La halvlederen være en p-type, da vil, pga. Lorenz-kraften gjøre at hull beveger seg mot kontakten A. Og dermed lage et målbart elektrisk felt fra A til B.
Motsatt felt for n-type med samme strøm og magnetfelt.
Tettheten vil da være gitt som under.
$$ E_y = \frac{J_x}{qp_0}B_z = R_H J_x B_z $$
$$ R_H \equiv \frac{1}{qp_0} $$
Som gir følgende
$$ p_0 = \frac{I_x B_z}{q t V_{AB}} $$
### Diffusjon
Natrulig prosess , som å blande melk i kaffe/te eller hvordan oksygen tas opp i kroppen.
> Diffusjon er å utligne konsentrasjonsforskjeller over tid, ved bruk av en tilfeldig prosess.
To viktige parameter i diffusjon:
* Spredningstiden $\tau$, gjennomsnittlig spredningsintervall
* Spredningslengden $\bar{l}$, gjennomsnittlig lengde mellom spredninger
#### Elektronfluxen gitt av diffusjon
For elektroner:
$$ \phi_n(x) = -D_n \frac{dn(x)}{dx}, \quad \text{der } D_n = \frac{\bar{l}^2}{2\tau} $$
For hull:
$$ \phi_p(x) = -D_p \frac{dp(x)}{dx}, \quad \text{der } D_n = \frac{\bar{l}^2}{2\tau} $$
$D_n$ og $D_p$ kalles diffusjonskonstantene.
#### Strømmen gitt av diffusjon
For elektroner:
$$ J_n^\text{diff} = q D_n \frac{dn(x)}{dx} $$
For hull:
$$ J_p^\text{diff} = -q D_p \frac{dp(x)}{dx} $$
#### Strømmen gitt av diffusjon med påsatt elektrisk felt
For elektroner:
$$ J_n(x) = q\mu_n n(x) E(x) + q D_n \frac{dn(x)}{dx} $$
For hull:
$$ J_p(x) = q\mu_p p(x) E(x) - q D_p \frac{dp(x)}{dx} $$
Der summen av disse gir den totale strømmen:
$$ J(x) = J_n(x) + J_p(x) $$
### Einsteinrealasjonen
> I termisk likevekt går det ingen netto strøm. Dermed må det settes opp et E-felt for å kompensere driftsstrømmen.
$$ J_p(x) = q\mu_p p(x) E(x) - q D_p \frac{dp(x)}{dx} = 0 $$
Som gir:
\begin{align\*}
E(x) &= \frac{D_p}{\mu_p}\cdot \frac{1}{p_0(x)}\cdot \frac{dp(x)}{dx} \\\\\
E(x) &= \frac{D_p}{\mu_p}\cdot \frac{1}{k_B T}\left(\frac{dE_i(x)}{dx} - \frac{dE_F(x)}{dx} \right)
\end{align\*}
Ved termisk likevekt er $\frac{dE_F(x)}{dx} = 0$ og $\frac{dE_i(x)}{dx} = qE(x)$.
Dermed får vi Einsteinrelasjonen:
$$ \frac{D}{\mu} = \frac{k_B T}{q} $$
### Kontinuitetslikningen
Viser sammenheng mellom endring i hulltetthet og strømmenm gjennom et areale.
![Kontinuitet av strømmer](figures/continuityEq.png)
$$ \frac{\partial \delta n(x,t)}{\partial t} = \phantom{-}\frac{1}{q}\frac{\partial J_n(x,t)}{\partial x} - \frac{\delta n}{\tau_n} $$
$$ \frac{\partial \delta p(x,t)}{\partial t} = -\frac{1}{q}\frac{\partial J_p(x,t)}{\partial x} - \frac{\delta p}{\tau_p} $$
### Steady State
Anta det lyses, med konstant effekt, på ene enden av en bit med n-type halvleder.
![Bit med halvleder](figures/steadyStateBar.png)
Man kan videre anta at det er en konstant hulltetthet på enden med lyset.
$$ \delta p(x=0) = \Delta p $$
Fra diffusjon kan man anta at hullene diffunderer ut over i biten.
Siden det ikke er noen tidsavhengighet i hullkonsentrajsonen vil diffusjonsliknignen bli:
$$ \frac{d^\delta p}{dx^2} = \frac{\delta p}{D_p \tau_p} \equiv \frac{\delta p}{L_p^2} $$
Der $ L_p \equiv \sqrt{D_p \tau_p} $.
Denne har en generell løsning:
$$ \delta p = C_1 \exp{\frac{x}{L_p}} + C_2 \exp{\frac{-x}{L_p}} $$
Og med grensebetingelser, $\delta p(x=0) = \Delta p$ og $\delta p(x \rightarrow \infty) = 0$, gir det oss:
$$ \delta p(x) = \Delta p \exp{\frac{-x}{L_p}} $$
### Haynes-Shockley eksperimentet
Eksperiment som gir informasjon om minoritetsladningsbærere.
![Haynes-Shockley Teori](figures/haynes-ShockleyTheory.png)
Vi bruker prinsippet om steady state for å finne mobiliteten til minoritetsladningsbærere og diffusjonskonstanten.
Ved å trykke på en strøm på ene siden, vil vi få et E-felt over halvlederen.
Ved å deretter sende inn en lyspuls på ene enden, vil det kunne detekteres en utsmørt versjon av pulsen etter en tid $t_d$.
![Haynes-Shockley Eksperiment](figures/haynes-ShockleyExp.png)
## PN-overganger
Vi vet at bitene i ugangspunlket er nøytrale.
Dermed ved termisk likevekt er følgende sant.
$$ \frac{d E_F}{ d x} = 0 $$
$$ n_n \gg n_p $$
$$ p_p \gg p_n $$