17 Commits

Author SHA1 Message Date
45bec71687 Finish all videoes 2021-05-18 19:29:40 +02:00
278d2975c9 Testing 2021-05-18 17:21:29 +02:00
854ed6508a Fixed post-recieve 2021-05-18 17:18:02 +02:00
e4131cbcaa Update last updated 2021-05-18 17:16:11 +02:00
a552d38111 Update gem 2021-05-18 16:59:51 +02:00
757b0a5799 Added some from video 12 and Start video 13 2021-05-15 16:35:26 +02:00
e5eae18389 Added formelark 2021-05-13 20:15:11 +02:00
0300fcb5f5 Merge branch 'master' of git.glados.no:oyvindskaaden/glados.no 2021-05-13 19:15:37 +02:00
0252ea6fc8 Merge branch 'dev' 2021-05-13 19:15:13 +02:00
da58611720 Add date 2021-05-13 19:13:58 +02:00
b240cff0ff Merge pull request 'dev' (#4) from dev into master
Reviewed-on: #4
2021-05-13 17:12:57 +00:00
5dd2250844 Fixed linting 2021-05-13 19:07:00 +02:00
a0c0091bde Finish monday 2021-05-10 22:33:57 +02:00
b6749b36d1 Writeup of lecture 11 about preemptive schedudling 2021-05-10 18:30:58 +02:00
8a3727a967 Merge branch 'dev'
Added some fixes to links
2021-03-04 11:55:43 +01:00
836a8fcb16 Merge branch 'dev' 2021-01-12 11:19:12 +01:00
1257c2a304 Merge branch 'dev'
Removed julegave to erlend
2020-12-26 18:36:00 +01:00
5 changed files with 428 additions and 22 deletions

View File

@@ -7,7 +7,7 @@ source "https://rubygems.org"
#
# This will help ensure the proper Jekyll version is running.
# Happy Jekylling!
gem "jekyll", "~> 4.1.1"
gem "jekyll", "~> 4.2.0"
# This is the default theme for new Jekyll sites. You may change this to anything you like.
# If you want to use GitHub Pages, remove the "gem "jekyll"" above and

View File

@@ -38,8 +38,6 @@ collections:
excerpt_separator: <!--more-->
markdown: kramdown
highlighter: rouge

View File

@@ -14,11 +14,11 @@
-
course: ttk4145
desc: Sanntidsprogrammering, våren 2021.
updated: 2021-05-04
updated: 2021-05-18
-
course: tiø4252
desc: Teknologiledelse, våren 2021.
updated: 2021-05-04
updated: 2021-05-13
# Høsten 2020
-

View File

@@ -0,0 +1,68 @@
---
title: TIØ4252
description: Teknologiledelse, våren 2021
date: 2021-05-13
---
## Formelark
Formelark i TIØ4252 kan finnes [her][formel].
Kildekoden ligger på [git][git_formel].
[formel]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/formelark/formelark.pdf
[git_formel]:https://git.glados.no/oyvindskaaden/TIO4252/src/branch/main/formelark/
## Eksamen
Alle filer er tilgjengelig på [git][git].
[git]: https://git.glados.no/oyvindskaaden/TIO4252
Kombinert løsningsforslag for alle eksamener finnes [her][LF_alle].
[LF_alle]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/LF.pdf
| År | Eksamen | Oppgave | LF |
| :--- | :------ | :------------ | :------- |
| 2020 | Høst | [Oppgave][1] | [LF][2] |
| 2020 | Sommer | [Oppgave][3] | [LF][4] |
| 2020 | Vår | [Oppgave][5] | [LF][6] |
| 2019 | Høst | [Oppgave][7] | [LF][8] |
| 2019 | Sommer | [Oppgave][9] | [LF][10] |
| 2018 | Høst | [Oppgave][11] | [LF][12] |
| 2018 | Sommer | [Oppgave][13] | [LF][14] |
| 2018 | Vår | [Oppgave][15] | [LF][16] |
| 2017 | Høst | [Oppgave][17] | [LF][18] |
| 2017 | Vår | [Oppgave][19] | [LF][20] |
| 2014 | Sommer | [Oppgave][21] | [LF][22] |
| 2013 | Sommer | [Oppgave][23] | [LF][24] |
{: .table-responsive-lg .table }
[1]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/20H/Eksamen_20H.pdf
[2]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/20H/Losning_20H.pdf
[3]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/20S/Eksamen_20S.pdf
[4]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/20S/Losning_20S.pdf
[5]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/20V/Eksamen_20V.pdf
[6]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/20V/Losning_20V.pdf
[7]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/19H/Eksamen_19H.pdf
[8]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/19H/Losning_19H.pdf
[9]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/19S/Eksamen_19S.pdf
[10]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/19S/Losning_19S.pdf
[11]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/18H/Eksamen_18H.pdf
[12]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/18H/Losning_18H.pdf
[13]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/18S/Eksamen_18S.pdf
[14]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/18S/Losning_18S.pdf
[15]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/18V/Eksamen_18V.pdf
[16]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/18V/Losning_18V.pdf
[17]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/17H/Eksamen_17H.pdf
[18]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/17H/Losning_17H.pdf
[19]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/17V/Eksamen_17V.pdf
[20]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/17V/Losning_17V.pdf
[21]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/14S/Eksamen_14S.pdf
[22]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/14S/Losning_14S.pdf
[23]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/13S/Eksamen_13S.pdf
[24]:https://git.glados.no/oyvindskaaden/TIO4252/raw/branch/main/eksamen/13S/Losning_13S.pdf

View File

@@ -26,7 +26,7 @@ Hard to capture faults.
### Traditional error handeling
{% highlight c %}
{% highlight java %}
FILE *
openConfigFile(){
FILE * f = fopen("/path/to/config.conf");
@@ -63,9 +63,9 @@ This is some of the error handling real time programming have.
* Handling of unexpected errors
* More threads hanles errors
* Can not test the conventional way
* Can only show extistence of errors
* Can not find errors in specification
* Can not find race conditions
* Can only show extistence of errors
* Can not find errors in specification
* Can not find race conditions
The fault path is shown under.
@@ -103,8 +103,8 @@ To test how the systems responds for a unknown error is to insert a failed accep
**Dynammic redunancy**
* Relies on detecting the error and recovering
* Resend if timeout and not receiving "ack"
* Go with default if no messages have been received
* Resend if timeout and not receiving "ack"
* Go with default if no messages have been received
* The acceptancetest must be good.
@@ -128,29 +128,29 @@ Find the failure modes: What could go wrong?
**Step 3: Handling with redundancy**
* Have multiple copies of the the information
* Use only the newest
* Use only the newest
#### Example with communication function
**Step 1: Failure modes**
* Message
* Lost
* Delayed
* Corrupted
* Duplicated
* Wrong recipient
* Lost
* Delayed
* Corrupted
* Duplicated
* Wrong recipient
**Step 2: Detection, Merging of errormodes and error injection**
* Adding information to message
* Checksum
* Session ID
* Sequence number
* Checksum
* Session ID
* Sequence number
* Adding "ack" on well recieved messages
* All errors will be treaded as "Lost message"
* Injection
* Occasionally throw away some messages
* Occasionally throw away some messages
**Step 3: Handling with redundancy**
@@ -179,7 +179,7 @@ There are three solutions:
* Store a checkpoint
* Do the "side effects"
2. Process pairs
* Crash and let an another process take over
* Crash and let an another process take over
3. Presistent processes
@@ -198,3 +198,343 @@ A transaction is a design framework for Damage Confinement and Error Recovery.
* **C**oncistency: Leaves the system in a consistent state when finished
* **I**solation: Errors does not spread
* **D**urability: Results are not lost
### Atomic Actions
**Resumption vs. Termination mode**
* If we continue where we were (e.g. after the interrupt) --> *Resumption*
* If we continue somewhere else (i.e. terminating what we where doing) --> Termination
**Async Notification (AN) = Low level thread interaction**
* Async event handling. ("Signals") (resumption)
* Modeled after a HW interrupt
* Can be sent to the correct thread
* Can be handled, ignored, blocked --> The domain can be controlled.
* Often lead to polling
* Could rather skip the signal and poll a status variable or a message queue
* Useless
* ATC --> Async transfer of Control (termination)
* Canceling threads
* setjmpt/longjmp could convert signals to ATC (not really, but still)
* ADA: a strictured mechanism for ATV is integraded with the selected statement
* RT Java: A structured mechanism for ATC is integraded with the exception-handling mechanism
#### Cancelling threads
**Yes, killing threads is ATC!**
* Can make termination model by letting domain be a thread
* "Create a `doWork` thread, and kill it if the action fails"
* Ca still control domain by disabling "cancelstate"
**But, but, but: It leaves ut in undifined state!?**
* Not if we have...
* Full control over changed state (like logs or recovery points) or some other way of recovering well.
* A lock manager that can unlock on behalf of killed thread
* Some control of where we were killed (like nok in the middle of a lock manager or log call)
* An this is what we have!
## Shared variable synchronization
### Non-Preemptive scheduling
Controlling a pump filling a tank.
**Spec:**
* Every second: measure the water level of the tank and generate the reference to the pump
* 10 times a second: Set the power of the pump motor
* Do some GUI: let the human control the process
#### A trivial solution: "Cyclic Exectutive"
{% highlight java %}
oldTime = now();
i = 0;
while(true) {
i = i + 1;
if (i % 10 == 0) {
i = 0;
calculatePumpReference();
}
controlPump();
do {
handleUserEvent();
} while(now() < oldTime + 0.1);
oldTime = oldTime + 0.1;
}
{% endhighlight %}
**Drawbacks**
* OK tasks?
* Timing hard to tune (what if pump sampling should be $\pi$/10?)
* Overload (what if `calucaltePumpReference` uses more than 1/10 seconds?)
* How to add new tasks? (Everything is coupled)
* Waste of time in the do-loop?
* What is priority of `handleUserEvents`?
* How are erros, exceptions, alarms etc. handled?
#### Better soulution with Non-preemptive scheduler
* *3 taskts* administered by a scheduler
* The scheduler takes care of who runs and timing
* Scheduler often inculuded in OSes
* Introducing priorities
{% highlight java %}
/**
* scheduler_registerThread(function, time, priority)
* Higher priority numer means higher priority in scheduler
*/
main() {
scheduler_registrerThread(controlPump, 0.1, 3);
scheduler_registrerThread(calculatePumpReference, 1, 2);
scheduler_registrerThread(handleUserEvents, 0.2, 1);
scheduler_mainLoop();
}
{% endhighlight %}
**Some notes on priorities**
* Priority is generally not important; rather, the main rule is to give higher priority to shorter-deadline tasks.
* This allows tasks to reach its deadlines.
* ... but this is not always the case - if e.g. the tasks are cooperating
* We still handle overload badly
* And: What connection between deadline and priority to start with?
* Is this a good dependency seen from a code quality perspective?
### Pros and cons of nonpreemptive scheduling
| **Pros** | **Cons** |
| :--------------------------------------------- | :------------------------------------------------------------------------- |
| Simple, intuitive, predictable | C macro hell |
| No kernel | Threads must cooperate <-- a form of dependency breaking module boundaries |
| Fast switching times | Heavy threads must be divided |
| Some elegant sunchronization patterns possible | Can we handle blocking of library functions? |
| | Unrobust to errors |
| | Unrobust to (heavy) error handling |
| | Hard to tune at end of project |
{: .table-responsive-lg .table }
### Preemptive Kernel
* Preemption, thread objects and the timer interrupt
* Enabling synchronization: Busy waiting, tes-and-set, disabling the timer interrupt
* Blocking and suspend & resume
* An API for synchronization? Semaphores!
#### Preemption
* Make a handler for a timer interrupt
* Store all registers (including IP & SP) in a "thread object"
* Organize queue of processes (Round Robin e.g. - a collection of thread objects?)
* Can synchronize by: `while(!ready);` (busy wating, "spin locks")
**Bad solution**
{% highlight java%}
while(lock==1) {}
lock = 1;
// We may run
lock = 0;
{% endhighlight %}
**Better solution**
{% highlight java%}
void t1() {
flag1 = 1; // Declare my intention
turn = 2; // But try to be polite
while(flag2 == 1 && turn == 2) {}
// We may run
flag1 = 0;
}
{% endhighlight %}
##### Looking more closely at the arsenal
**How can we make basic synchronization under preemption?**
* Spin locks (wasting time and cpu)
* Test&Set (swap) assembly instruction (atomic, but not obvious)
* Disable interrupt (steals control from OS/scheduler)
**But**
* If we disable the timer interrupt we don not have preemption any more
* And... Are these good abstractions in the application programmer domain?
#### Blocked threads
**Let us introduce another queue; the collection of threads not running, waiting for something**
* Fixes the bad performance of spin locks. Is conceptually better.
* `suspend` moves a thread object from "run" queue to "blocked" queue
* `resume` moves it back.
##### Two bad solutions
{% highlight java%}
t1(){
while(busy == 1) suspend();
busy = 1; // It is free; tak it - No
// Run
busy = 0; // Release resource
resume t2 // No
}
{% endhighlight %}
or
{% highlight java%}
t1(){
while(TestNSet(busy, 1) == 1) suspend();
// We own resource
// Run
busy = 0;
resume t2 // No
}
{% endhighlight %}
##### The suspend/resume problem
{% highlight java%}
// Global variables
bool g_initDone = False;
// Threads
t1(){ t2(){
/* Do init */ if (g_initDone == False) {
g_initDone = True; Suspend();
resume(t2) }
// Continue executing // Continue exectuting
} }
{% endhighlight %}
#### Priorities
* Threads mey have different *priorities*. (A sortet run-queue, or more of them.)
* Only if there are no running threads on a higher priority, a thread will run.
* We are not aiming for some sens of fairness (!). But predictability.
* And priorities supports schedulability proofs.
* But we open ourselves up to *starvation*. A thread may not ever get to run, even if it is runnable.
#### Application-level syncronization
**SO, the application programmer needs some syncronozation primitives...**
* `sleep()`? - Ok
* Publish `suspend` and `resume` - No
* Events (`wait` and `signal`) - Just named versions of suspend & resume semantics.
* Fixes the need to know aboud "thread objects". But no
* ...or "Condition variables" - same
### Semaphores
**A counting semaphore**
* `signal(SEM)` increases the counter (possibly resuming a thread waiting for the semaphore)
* `wait(SEM)` decrements the counter - will block (be suspended) `if SEM == 0`
* The semaphores value can not be negative
* Of course; These calls are protected from interleaving by disabling the timer interrupt
**We solve beautifully:**
* Mutual Exclusion
* Conditional Synchronization (ref `suspend`/`resume`)
* Basic resource allocation
**Semaphore variations**
* `wait` and `signal` nay take parameter value to add or subtract
* `getValue(SEM)` returning the value of the semaphore. (Fishy)
* BInary semaphores (`signal` will fail `if SEM == 1`)
* Who is woken at `signal` (FIFO, Arbitrary, Highest priority)
* The mutex
* binary
* ownership
* allows mulitple waits by owner
* regions (may be released by Javas `wait` or POSIX condition variables)
* RTFM
**Semaphore challenges**
* Breaks modules (both ways)
* Does not scale!
* Deadlocks
* Global analysis --> Does not scale
* Can not release "temporarily
* "Limited expressive power". Some reasonalbe problems are hard to solve
* Ref ["The Little Book of Semaphores"](https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf)
### Why shared-variable synchronization
**Why not?**
* "Shared variables" is bad code quality
* Ref global variables, and data members in module interfaces
* An obvious bottleneck? Scales terribly
* "Variables" are passive objects
* They can not protect themselves
* Why use synchronization when it is communication we need?
* Technology transfers badly to distibuted systems
* ... and this is before we start discussing how hard it is
**Why?**
* Part of the "real-time" design pattern
* "One thread per timing demand"
* We do have scheduling proofs and best practises
* Timing analysis is global anyway
* Scalability and deadlock analysis may not be the limiting constraint
* HW is shared memory architecture
* Infrastucture is avalible
* Communication systems requires infrastucture that we may not have
#### *All* resources are shared!
* Memory, certainly
* "Hidden" memory used by libraries (.. your own modules and the kernel)
* If the library takes care of this itself, it is called *"reentrant"*
* Sensors and actuators
* "CPU" - Computing capacity
* *This* is real-time programming; We solve it by *Scheduling*
* ... any other interface
#### Some standard problems/pit-falls
* **Race condition**: A bug that surfaces by unfortunate timing or order of events
* **Deadlock:** system in circular wait
* Special case of livelock
* Does not use CPU
* **Livelock:** system locked in a subset of states
* like deadlock, but we use CPU
* Busy-Waiting is a livelock
* **Starvation:** A thread does "by accident" not get the necessary resources
#### Features in syncronization
* Critical Section - Code that must not be interupted
* Mutual Exclusion - More piecesof code that must not interrupt each other
* Bounded buffer - Buffer with full/empty synchronization
* Read/Write Locks
* Readers can interleave eachother
* Writers have mutual exclusion
* Condition Syncronization - Blocking on event or status
* Guards etc.
* Resource allocation
* More than mutual exclution!
* Ref: The lock manager
* Rendezvouz/barriere - Synchronization point
* Ref: AA "end boundary"
* Communication
* Broadcast
* ...