Finished lecture 7
parent
4df6e6695d
commit
d97bb0d912
Binary file not shown.
After Width: | Height: | Size: 38 KiB |
File diff suppressed because one or more lines are too long
After Width: | Height: | Size: 11 KiB |
Binary file not shown.
After Width: | Height: | Size: 24 KiB |
Binary file not shown.
After Width: | Height: | Size: 112 KiB |
Binary file not shown.
After Width: | Height: | Size: 15 KiB |
|
@ -104,7 +104,387 @@ $$
|
|||
Denne du får standardversjonen ved å sette $k=0$.
|
||||
|
||||
|
||||
#### Sinus
|
||||
|
||||
Dersom en sinus-kurve skal være periodisk med en periode $N$, og siden vi vet at en diskret-tid sinus er periodisk med $2\pi$, har vi at:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
\cos(2\pi n) &= \cos(2\pi f (n+N)) \\
|
||||
\Rightarrow 2\pi f N &= 2\pi k \\
|
||||
\Rightarrow f &= \frac{k}{N}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
### Kompleks-eksponensial
|
||||
|
||||
$$ x[n] = Ae^{[2\pi f n + \theta]} $$
|
||||
|
||||
Denne har også en periodisitet på $2\pi$, og sekvensen er periodisk dersom $f$ er rasjonell.
|
||||
|
||||
Denne er veldig viktig i diskret-tid Fourier representasjon.
|
||||
|
||||
### Sampling av en sinus-funksjon
|
||||
|
||||
Anta vi sampler en analog sinus-funksjon med intervallene $nT = \frac{n}{F_S}$:
|
||||
|
||||
$$ x_a(t) = A\cos(\Omega t) = A\cos(2\pi F t) $$
|
||||
|
||||
Da vil den diskrete sekvensen være:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
x[n] &= x_a(nT) \\
|
||||
&= A\cos\left[2\pi\frac{F}{F_S}n\right] \\
|
||||
&= A\cos\left[2\pi f n\right]
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Der vi har $f=\frac{F}{F_S}$ eller $\omega = \Omega T$, som er den relative/normaliserte frekvensen (uavhengig av samlingfreksensen).
|
||||
|
||||
Fra før vet vi at:
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
-\frac{1}{2} < &f \leq \frac{1}{2} \\
|
||||
-\frac{F_S}{2} < &f \leq \frac{F_S}{2}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
|
||||
### Dekomponering av signaler
|
||||
|
||||
Vi kan få ut en verdi av en sekvens ved å gange inn enhetspulsen på en gitt $n$.
|
||||
|
||||
$$ x[k] = x[n]\delta[n-k] $$
|
||||
|
||||
Der hele signalet kan gis som en sum av hver sekvensverdi:
|
||||
|
||||
$$ x[n] = \sum_{k=-\infty}^\infty x[k]\delta[n-k] $$
|
||||
|
||||
### Diskret-tid-systemer
|
||||
|
||||
Et diskret-tid-system kan klassifiseres som:
|
||||
* Lineær eller ikke-lineær
|
||||
* Tidsinvariant eller tidsvariant
|
||||
* Kausale eller ikkekausale
|
||||
|
||||
I diskret-tid-systemer gjelder følgende:
|
||||
* Superpossisjon (lineæritet)
|
||||
* Varierer ikke med tiden (tidsinvariant)
|
||||
* Kausalt
|
||||
* Resultatet er kun avhengig av tidligere eller nåværende verdier
|
||||
* Ikke-kausalt
|
||||
* Gunstig å implimentere der vi vet alle verdier i en sekvens, men ikke i sanntidssystemer.
|
||||
* Stabile
|
||||
* Et system er kun stabilt dersom for hvert bundet inngangssignal er det et bundet utgangssignal.
|
||||
|
||||
### Impulsrespons
|
||||
|
||||
Vi sender ut en enhetspuls og ser på hvordan systemet utvikler seg.
|
||||
|
||||
![Impulsrespons](figures/impulseResponse.png)
|
||||
|
||||
Vi kan finne impulsresponsen ved å sette $x[n] = \delta[n]$.
|
||||
Da får vi at $y[n] = h[n]$.
|
||||
|
||||
### Konvulosjon
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
y[n] &= \mathcal{H}\{x[n]\} \\
|
||||
&= \mathcal{H}\left\{\sum_k x[k]\delta[n-k]\right\}\\
|
||||
&= \sum_k x[k]\mathcal{H}\left\{\delta[n-k]\right\} \\
|
||||
&= \sum_k x[k] h[n-k] \\
|
||||
&= x[n] * h[n]
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
Det er mulig å gjøre konvulosjon både stegvis eller med en matrise.
|
||||
|
||||
Matrisen er bare å lage en "gangetabell med verdiene i sekvensene, gange sammen og summere anti-diagonalene.
|
||||
|
||||
![Utregning av konvulosjon](figures/diagonalConv.png)
|
||||
|
||||
Dersom lengden av sekvensen $x[n]$ er $N_x$ og lengden av $h[n]$ er $N_h$, vil lengden av konvulosjonen være:
|
||||
|
||||
$$ N_y = N_x + N_h - 1 $$
|
||||
|
||||
### Lengde av systemer
|
||||
|
||||
Det finnes to typer lengde på impulsresponsen. IIR og FIR.
|
||||
|
||||
#### IIR
|
||||
|
||||
"Infinite(-duration) impulse response", er et system der lengden av impulsresponsen er uendelig i lengde. Typisk er utgangen avhengig av forrige resultat.
|
||||
|
||||
#### FIR
|
||||
|
||||
"Finite(-duration) impulse response", er et system der impulsresponsen har en endelig lengde.
|
||||
|
||||
|
||||
## Diskret-tid Fourieranalyse
|
||||
|
||||
Analytisk transformasjon (DTFT)
|
||||
|
||||
$$ X(\omega) = \sum_{n=-\infty}^\infty x[n]e^{-j\omega n} $$
|
||||
|
||||
Og invers transformasjon (syntetisk transformasjon)
|
||||
|
||||
$$ x[n] = \frac{1}{2\pi}\int_{-\pi}^\pi X(\omega) e^{j\omega n} d\omega$$
|
||||
|
||||
Grensene for frekvensdomenet er fra $-\pi$ til $\pi$.
|
||||
|
||||
Notasjonen er som følger
|
||||
|
||||
$$ x[n] \stackrel{\mathcal{F}}{\leftrightarrow} X(\omega) $$
|
||||
|
||||
### Egenskaper
|
||||
|
||||
#### Symmetri
|
||||
|
||||
Odde og like funksjoner, likt som imaginære og ikke imaginære (reelle).
|
||||
|
||||
* Odd: $x[-n] = -x[n]$
|
||||
* Lik: $x[-n] = x[n]$
|
||||
|
||||
Man kan skrive en sekvens på formen:
|
||||
|
||||
$$ x[n] = \underbrace{x_R[n]}_{\text{reell}} + \underbrace{jx_I[n]}_{\text{imaginær}} $$
|
||||
|
||||
![DTFT symmetrier](figures/DTFTSymmetry.png)
|
||||
|
||||
#### Andre egenskaper
|
||||
|
||||
* Tidsforskyvning
|
||||
|
||||
$$ x[n-k] \stackrel{\mathcal{F}}{\leftrightarrow}e^{-j\omega n}X(\omega) $$
|
||||
|
||||
* Tidsreversering
|
||||
|
||||
$$ x[-n] \stackrel{\mathcal{F}}{\leftrightarrow} X(-\omega) $$
|
||||
|
||||
* Konvulosjon
|
||||
|
||||
$$ x_1[n] * x_2[n] \stackrel{\mathcal{F}}{\leftrightarrow} X_1(\omega)X_2(\omega) $$
|
||||
|
||||
* Frekvensskifting
|
||||
|
||||
$$ e^{j\omega_0 n}x[n] \stackrel{\mathcal{F}}{\leftrightarrow} X(\omega - \omega_0) $$
|
||||
|
||||
* Modulasjon
|
||||
|
||||
$$
|
||||
\begin{gather*}
|
||||
x[n] \cos(\omega_0 n) \\
|
||||
\updownarrow\mathcal{F} \\
|
||||
\frac{1}{2}\left[(X(\omega - \omega_0)+ (X(\omega + \omega_0)\right]
|
||||
\end{gather*}
|
||||
$$
|
||||
|
||||
* Parseval
|
||||
|
||||
$$
|
||||
\begin{gather*}
|
||||
\sum_n |x[n]|^2\\
|
||||
\updownarrow\mathcal{F} \\
|
||||
\frac{1}{2\pi}\int_{-\pi}^\pi X(\omega)d\omega
|
||||
\end{gather*}
|
||||
$$
|
||||
|
||||
* Vindu
|
||||
|
||||
$$
|
||||
\begin{gather*}
|
||||
x_1[n]x_2[n]\\
|
||||
\updownarrow\mathcal{F} \\
|
||||
\frac{1}{2\pi}\int_{-\pi}^\pi X_1(\lambda)X_2(\omega - \lambda)d\omega
|
||||
\end{gather*}
|
||||
$$
|
||||
|
||||
## Z-transformasjon
|
||||
|
||||
Z-transformasjonen av et diskret sekvens er gitt som:
|
||||
|
||||
$$ X(z) = \mathcal{Z}\{x[n]\} = \sum_{n=-\infty}^\infty x[n]z^{-n} $$
|
||||
|
||||
Notasjonen er:
|
||||
|
||||
$$x[n] \stackrel{\mathcal{Z}}{\leftrightarrow} X(z)$$
|
||||
|
||||
$$x[n] = \mathcal{Z}^{-1}\{X(z)\}$$
|
||||
|
||||
Transformasjonen transformerer en sekvens til den tilsvarende representasjonen i det komplekse $z$-planet.
|
||||
|
||||
ROC (Region of convergence) er settet med alle verdier av $z$ der $X(z)$ har en endelig verdi.
|
||||
|
||||
Transformasjonen bestemmer ikke unikt tids-sekvensen.
|
||||
Ved å velge en ROC kan vi lage et ønsket signal/filter.
|
||||
|
||||
Dersom vi har at ROC er alt utenfor en sirkel, er sekvensen *kausal*.
|
||||
|
||||
Dersom ROC er innsiden av en sirkel, er sekvensen ***anti**kausal*.
|
||||
|
||||
### Egenskaper
|
||||
|
||||
* Lineær
|
||||
* ROC av resultatet er minst $\mathcal{R}\_{X_1} \cap \mathcal{R}\_{X_2}$
|
||||
* Tidsforskyvning
|
||||
* ROC lik som for $X(z)$
|
||||
|
||||
$$ x[n-k] \stackrel{\mathcal{Z}}{\leftrightarrow}z^{-k}X(z) $$
|
||||
|
||||
* Skalering
|
||||
* Dersom ROC før skalering er $r_1 < \|z\| < r_2$, så er ROC etter lik $\|a\|r_1 < \|z\| < \|a\|r_2$.
|
||||
|
||||
$$ a^n x[n] \stackrel{\mathcal{Z}}{\leftrightarrow} X(a^{-1} z) $$
|
||||
|
||||
* Tidsreversering
|
||||
* Dersom ROC er $r_1 < \|z\| < r_2 $, så er ROC etter tidsreversering $\frac{1}{r_2} < \|z\| < \frac{1}{r_1}$
|
||||
|
||||
$$ x[-n] \stackrel{\mathcal{Z}}{\leftrightarrow} X(z^{-1}) $$
|
||||
|
||||
* Konvulosjon
|
||||
* ROC minst snittet av ROC til $X_1$ og $X_2$.
|
||||
|
||||
$$ x_1[n]*x_2[n]\stackrel{\mathcal{Z}}{\leftrightarrow} X_1(z)X_2(z)$$
|
||||
|
||||
* Derivering
|
||||
* ROC er den samme
|
||||
* Initialverditeroremet: $x[0] = \lim_{z\rightarrow \infty}X(z)$, betyr at $x[n]$ er kausalt.
|
||||
|
||||
$$ nx[n] \stackrel{\mathcal{Z}}{\leftrightarrow} -z\frac{dX(z)}{dz} $$
|
||||
|
||||
### Rasjonelle z-transformasjoner
|
||||
|
||||
Rasjonell dersom transformasjonen kan bli representert som forholdet mellom to polynomer i $z^{-1}$ eller $z$.
|
||||
|
||||
$$
|
||||
\begin{align*}
|
||||
X(z) &= \frac{B(z)}{A(z)} \\
|
||||
&= \frac{b_0 + b_1 z^{-1} + \ldots + b_M z^{-M} }{a_0 + a_1 z^{-1} + \ldots + a_N z^{-N}} \\
|
||||
&= \frac{b_0}{a_0}\frac{\prod_{k=1}^M \left(1-z_k z^{-1}\right)}{\prod_{k=1}^N \left(1-p_k z^{-1}\right)}
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
|
||||
### Systemanalyse
|
||||
|
||||
![Systemanalyse](figures/linearTimeInvariant.png)
|
||||
|
||||
Dersom vi har et system som vist over, sender inn en sekvens $x[n]$ eller $X(z)$ og observerer utgangen $y[n]$ eller $Y(z)$, kan vi finne systemfunksjonen.
|
||||
|
||||
$$h[n] = \frac{y[n]}{x[n]}$$
|
||||
|
||||
$$ H(z) = \frac{Y(z)}{X(z)} $$
|
||||
|
||||
Vi kan bruke transformasjonen til å gå mellom dem.
|
||||
|
||||
Begge er helt ekvivalente.
|
||||
|
||||
#### Kausalitet og stabilitet
|
||||
|
||||
For at et system skal være kausalt, må ROC være alt utenfor en sirkel.
|
||||
|
||||
For at et system skal være BIBO stabilt, må enhetssirkelen $z = e^{-j\omega}$ være med i ROC.
|
||||
|
||||
Det er mulig å bestemme om et system er kausal og stabilt ved å velge ROC.
|
||||
|
||||
ROC må heller ikke inneholde noen poler.
|
||||
|
||||
#### Frekvensrespons
|
||||
|
||||
For å finne frekvensresponsen til et system, "går" man langs enhetsirkelen, fra $-\pi$ til $\pi$.
|
||||
|
||||
|
||||
##### Utregning
|
||||
|
||||
Dersom vi har frekvensresponsen til et system:
|
||||
|
||||
$$ H_1(z) = \frac{1}{1-\frac{1}{2}z^{-1}} $$
|
||||
|
||||
Matlabløsningen er som under
|
||||
|
||||
{% highlight matlab %}
|
||||
B = 1;
|
||||
A = [1 -0.5];
|
||||
figure(1)
|
||||
zplane(B,A)
|
||||
figure(2)
|
||||
[H,W]=freqz(B,A);
|
||||
plot(W/pi,abs(H));
|
||||
{%endhighlight%}
|
||||
|
||||
## Filteregenskaper
|
||||
|
||||
Frekvensresponsen til et system bestemmer hvordan type system det er.
|
||||
|
||||
* Båndpass
|
||||
* Slipper gjennom visse frekvenser
|
||||
* Båndstopp
|
||||
* Stopper visse frekvenser
|
||||
* Lavpass
|
||||
* Slipper gjennom lave frekvenser
|
||||
* Høypass
|
||||
* Slipper gjennom høye frekvenser
|
||||
|
||||
### Lavpass
|
||||
|
||||
I et lavpassfilter ønsker vi å putte polene nærme(re) $z=1$, og nuller nærme(re) $z=-1$.
|
||||
|
||||
Dersom vi ser på et pol-null-plot ser vi at frekvensen er $0$ ved $z=1$, og poler forsterker et signal når vi er "nærme" det (ref tilbake til hvordan finne frevensresponsen til en z-transformasjon).
|
||||
|
||||
### Høypass
|
||||
|
||||
I et høypassfilter ønsker vi det motsatte av et lavpassfilter. Vi ønsker å putte så mange nuller nærheten av $z=1$, og så mange poler i nærheten av $z=-1$.
|
||||
|
||||
Dette er av samme grunn som for et lavpass.
|
||||
|
||||
### "Notch"-filter
|
||||
|
||||
Kan isolere seg rundt en veldig spesifik frekvens og fjerne den.
|
||||
|
||||
For å oppnå dette, så kan man putte noen nuller på enhetssirkelen og noen poler i nærheten av nullene. Da får vi veldig smale bånd.
|
||||
|
||||
### Kamfilter
|
||||
|
||||
Litt som et omvendt "notch"-filter. Det er periodiske nuller langs enhetssirkelen. Ender opp med noe som ligner på en kam.
|
||||
|
||||
### Allpassfilter
|
||||
|
||||
Dette filteret har en amplituderespons på $1$. Men den kan endre fasen på signalet ved gitte frekvenser.
|
||||
|
||||
### Lineær-fase-filtere
|
||||
|
||||
Dette er ønskelig, fordi da får vi kun en tidsforsinkning i utgangssignalet i båndpass.
|
||||
For et lavpass er dette for lave frekvenser.
|
||||
|
||||
$$ \angle H(\omega) = a + b\omega $$
|
||||
|
||||
Der
|
||||
|
||||
$$H(\omega) = |H(\omega)| e^{j\angle H(\omega)} $$
|
||||
|
||||
Da vil nullene komme i resiproke par.
|
||||
Altså dersom vi har en null i en vinkel, og avstand fra enhetssirkelen. Da vil den resiproke nullen være i samme vinkel, men samme avstand fra enhetssirkelen, bare på andre siden av sirkelen.
|
||||
|
||||
![Lineær fase](figures/LinearPhase.svg)
|
||||
|
||||
## Inverse- og minimumsfase-systemer
|
||||
|
||||
Dersom et system $\mathcal{T}$ er inverterbart, kan vi finne inngangssignalet dersom vi har utgangsignalet og den inverterbare systemgfunksjonen.
|
||||
|
||||
$$
|
||||
\begin{gather*}
|
||||
h[n]*h_I[n] = \delta[n] \\
|
||||
\updownarrow\mathcal{Z} \\
|
||||
H(z)H_I(z) = 1
|
||||
\end{gather*}
|
||||
$$
|
||||
|
||||
|
||||
### Minimumsfasefilter
|
||||
|
||||
Et system kalles minimumfase dersom alle nuller og poler ligger innenfor enhetssirkelen.
|
||||
|
||||
Et stabilt pol-null-system som er av typen minimum fase har en stabil invers som også er minimum fase.
|
||||
|
|
Loading…
Reference in New Issue