Finish lecture 20 and 21
parent
2a457997c4
commit
d695025ad0
|
@ -0,0 +1,349 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg
|
||||
xmlns:ns1="http://wanglongqi.github.io/WriteTeX"
|
||||
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||
xmlns:cc="http://creativecommons.org/ns#"
|
||||
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||
xmlns:svg="http://www.w3.org/2000/svg"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
width="51.560955mm"
|
||||
height="22.29081mm"
|
||||
viewBox="0 0 51.560955 22.29081"
|
||||
version="1.1"
|
||||
id="svg8">
|
||||
<defs
|
||||
id="defs2">
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="marker1270"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto">
|
||||
<path
|
||||
transform="matrix(-0.2,0,0,-0.2,-1.2,0)"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
id="path1268" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="Arrow1Mend"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto">
|
||||
<path
|
||||
transform="matrix(-0.4,0,0,-0.4,-4,0)"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
id="path848" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="Arrow1Send"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto">
|
||||
<path
|
||||
transform="matrix(-0.2,0,0,-0.2,-1.2,0)"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
id="path854" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="Arrow2Mend"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto">
|
||||
<path
|
||||
transform="scale(-0.6)"
|
||||
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
|
||||
id="path866" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="Arrow2Lend"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto">
|
||||
<path
|
||||
transform="matrix(-1.1,0,0,-1.1,-1.1,0)"
|
||||
d="M 8.7185878,4.0337352 -2.2072895,0.01601326 8.7185884,-4.0017078 c -1.7454984,2.3720609 -1.7354408,5.6174519 -6e-7,8.035443 z"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:0.625;stroke-linejoin:round;stroke-opacity:1"
|
||||
id="path860" />
|
||||
</marker>
|
||||
<marker
|
||||
style="overflow:visible"
|
||||
id="marker1270-6"
|
||||
refX="0"
|
||||
refY="0"
|
||||
orient="auto">
|
||||
<path
|
||||
transform="matrix(-0.2,0,0,-0.2,-1.2,0)"
|
||||
style="fill:#000000;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1pt;stroke-opacity:1"
|
||||
d="M 0,0 5,-5 -12.5,0 5,5 Z"
|
||||
id="path1268-7" />
|
||||
</marker>
|
||||
</defs>
|
||||
<metadata
|
||||
id="metadata5">
|
||||
<rdf:RDF>
|
||||
<cc:Work
|
||||
rdf:about="">
|
||||
<dc:format>image/svg+xml</dc:format>
|
||||
<dc:type
|
||||
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||
<dc:title></dc:title>
|
||||
</cc:Work>
|
||||
</rdf:RDF>
|
||||
</metadata>
|
||||
<g
|
||||
id="layer1"
|
||||
transform="translate(-51.261413,-57.838217)">
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.155454;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#Arrow1Mend)"
|
||||
d="M 76.261724,77.83537 V 58.144567"
|
||||
id="path1137" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.165;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1;marker-end:url(#marker1270)"
|
||||
d="M 76.261724,77.83537 H 100.81368"
|
||||
id="path1266" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.165;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 51.709763,77.83537 H 76.261724"
|
||||
id="path1266-5" />
|
||||
<path
|
||||
style="fill:none;stroke:#0000fe;stroke-width:0.264583;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:1.5875, 0.264583;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="m 66.723219,77.900611 v -10.05319 h 9.534943"
|
||||
id="path1381" />
|
||||
<path
|
||||
style="fill:none;stroke:#0000fe;stroke-width:0.264583;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:1.5875, 0.264583;stroke-dashoffset:0;stroke-opacity:1"
|
||||
d="M 85.793105,77.900611 V 67.847421 H 76.258162"
|
||||
id="path1381-3" />
|
||||
<g
|
||||
ns1:text="$$H_D(\omega)$$"
|
||||
transform="matrix(0.27041724,0,0,0.27041724,-79.742662,30.980641)"
|
||||
id="g1499">
|
||||
<g
|
||||
id="surface1">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1480">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="M 7.609375,-6.046875 C 7.703125,-6.40625 7.71875,-6.5 8.4375,-6.5 c 0.265625,0 0.34375,0 0.34375,-0.203125 0,-0.109375 -0.109375,-0.109375 -0.140625,-0.109375 -0.28125,0 -1,0.03125 -1.28125,0.03125 -0.28125,0 -0.984375,-0.03125 -1.28125,-0.03125 -0.078125,0 -0.1875,0 -0.1875,0.203125 0,0.109375 0.09375,0.109375 0.28125,0.109375 0.015625,0 0.203125,0 0.375,0.015625 0.1875,0.03125 0.265625,0.03125 0.265625,0.171875 0,0.03125 0,0.046875 -0.03125,0.1875 L 6.1875,-3.703125 H 3.140625 l 0.59375,-2.34375 C 3.8125,-6.40625 3.84375,-6.5 4.5625,-6.5 c 0.265625,0 0.34375,0 0.34375,-0.203125 0,-0.109375 -0.109375,-0.109375 -0.140625,-0.109375 -0.28125,0 -1,0.03125 -1.28125,0.03125 -0.28125,0 -0.984375,-0.03125 -1.28125,-0.03125 -0.078125,0 -0.1875,0 -0.1875,0.203125 0,0.109375 0.09375,0.109375 0.28125,0.109375 0.015625,0 0.203125,0 0.375,0.015625 0.171875,0.03125 0.265625,0.03125 0.265625,0.171875 0,0.03125 0,0.0625 -0.03125,0.1875 L 1.5625,-0.78125 c -0.09375,0.390625 -0.109375,0.46875 -0.90625,0.46875 -0.171875,0 -0.265625,0 -0.265625,0.203125 C 0.390625,0 0.515625,0 0.53125,0 0.8125,0 1.515625,-0.03125 1.796875,-0.03125 2,-0.03125 2.21875,-0.015625 2.4375,-0.015625 2.65625,-0.015625 2.875,0 3.078125,0 3.15625,0 3.28125,0 3.28125,-0.203125 3.28125,-0.3125 3.1875,-0.3125 3,-0.3125 c -0.375,0 -0.640625,0 -0.640625,-0.171875 0,-0.0625 0.015625,-0.109375 0.015625,-0.171875 l 0.6875,-2.734375 h 3.03125 c -0.40625,1.65625 -0.640625,2.609375 -0.6875,2.75 C 5.3125,-0.3125 5.125,-0.3125 4.5,-0.3125 c -0.140625,0 -0.234375,0 -0.234375,0.203125 C 4.265625,0 4.390625,0 4.40625,0 4.6875,0 5.390625,-0.03125 5.671875,-0.03125 5.875,-0.03125 6.09375,-0.015625 6.3125,-0.015625 6.53125,-0.015625 6.75,0 6.953125,0 7.03125,0 7.15625,0 7.15625,-0.203125 7.15625,-0.3125 7.0625,-0.3125 6.875,-0.3125 c -0.359375,0 -0.640625,0 -0.640625,-0.171875 0,-0.0625 0.015625,-0.109375 0.03125,-0.171875 z m 0,0"
|
||||
transform="translate(580.368,110.99)"
|
||||
id="path1478" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1484">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="M 1.3125,-0.546875 C 1.265625,-0.3125 1.25,-0.25 0.703125,-0.25 0.578125,-0.25 0.5,-0.25 0.5,-0.09375 0.5,0 0.578125,0 0.703125,0 H 3.1875 c 1.546875,0 3.03125,-1.421875 3.03125,-2.9375 0,-1.015625 -0.703125,-1.828125 -1.828125,-1.828125 H 1.84375 c -0.140625,0 -0.21875,0 -0.21875,0.15625 0,0.09375 0.078125,0.09375 0.234375,0.09375 0.109375,0 0.140625,0 0.265625,0.015625 0.140625,0.015625 0.140625,0.03125 0.140625,0.109375 0,0 0,0.046875 -0.015625,0.140625 z m 1.5625,-3.71875 c 0.0625,-0.21875 0.0625,-0.25 0.359375,-0.25 H 4.125 c 0.78125,0 1.4375,0.390625 1.4375,1.34375 0,0.15625 -0.078125,1.359375 -0.765625,2.15625 C 4.515625,-0.703125 3.921875,-0.25 3.0625,-0.25 H 2.125 c -0.21875,0 -0.234375,-0.015625 -0.234375,-0.078125 0,0 0,-0.03125 0.03125,-0.140625 z m 0,0"
|
||||
transform="translate(588.649,112.485)"
|
||||
id="path1482" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1488">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 3.296875,2.390625 c 0,-0.03125 0,-0.046875 -0.171875,-0.21875 C 1.890625,0.921875 1.5625,-0.96875 1.5625,-2.5 c 0,-1.734375 0.375,-3.46875 1.609375,-4.703125 0.125,-0.125 0.125,-0.140625 0.125,-0.171875 0,-0.078125 -0.03125,-0.109375 -0.09375,-0.109375 -0.109375,0 -1,0.6875 -1.59375,1.953125 -0.5,1.09375 -0.625,2.203125 -0.625,3.03125 0,0.78125 0.109375,1.984375 0.65625,3.125 C 2.25,1.84375 3.09375,2.5 3.203125,2.5 c 0.0625,0 0.09375,-0.03125 0.09375,-0.109375 z m 0,0"
|
||||
transform="translate(595.876,110.99)"
|
||||
id="path1486" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1492">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 6.03125,-3.703125 c 0,-0.453125 -0.171875,-0.703125 -0.40625,-0.703125 -0.25,0 -0.515625,0.234375 -0.515625,0.46875 0,0.09375 0.046875,0.203125 0.140625,0.296875 0.171875,0.15625 0.359375,0.421875 0.359375,0.84375 0,0.390625 -0.203125,0.96875 -0.5,1.421875 C 4.8125,-0.953125 4.4375,-0.609375 3.96875,-0.609375 3.40625,-0.609375 3.09375,-0.96875 3,-1.5 c 0.109375,-0.265625 0.34375,-0.90625 0.34375,-1.1875 0,-0.109375 -0.046875,-0.21875 -0.1875,-0.21875 -0.078125,0 -0.1875,0.03125 -0.265625,0.171875 C 2.78125,-2.53125 2.65625,-1.890625 2.65625,-1.53125 2.328125,-1.0625 1.9375,-0.609375 1.3125,-0.609375 c -0.671875,0 -0.875,-0.59375 -0.875,-1.140625 0,-1.25 1.015625,-2.296875 1.015625,-2.421875 0,-0.109375 -0.078125,-0.1875 -0.1875,-0.1875 -0.125,0 -0.203125,0.125 -0.265625,0.21875 -0.5,0.734375 -0.875,1.921875 -0.875,2.828125 0,0.6875 0.21875,1.421875 1.046875,1.421875 0.703125,0 1.171875,-0.5 1.53125,-1.046875 0.09375,0.578125 0.484375,1.046875 1.09375,1.046875 0.78125,0 1.25,-0.609375 1.609375,-1.359375 0.25,-0.484375 0.625,-1.84375 0.625,-2.453125 z m 0,0"
|
||||
transform="translate(599.75,110.99)"
|
||||
id="path1490" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1496">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 2.875,-2.5 c 0,-0.765625 -0.109375,-1.96875 -0.65625,-3.109375 -0.59375,-1.21875 -1.453125,-1.875 -1.546875,-1.875 -0.0625,0 -0.109375,0.046875 -0.109375,0.109375 0,0.03125 0,0.046875 0.1875,0.234375 0.984375,0.984375 1.546875,2.5625 1.546875,4.640625 0,1.71875 -0.359375,3.46875 -1.59375,4.71875 C 0.5625,2.34375 0.5625,2.359375 0.5625,2.390625 0.5625,2.453125 0.609375,2.5 0.671875,2.5 0.765625,2.5 1.671875,1.8125 2.25,0.546875 2.765625,-0.546875 2.875,-1.65625 2.875,-2.5 Z m 0,0"
|
||||
transform="translate(606.309,110.99)"
|
||||
id="path1494" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
ns1:text="$$\omega_c$$"
|
||||
transform="matrix(0.22702811,0,0,0.22702811,-49.153512,54.07998)"
|
||||
id="g1569">
|
||||
<g
|
||||
id="g1567">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1561">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 6.03125,-3.703125 c 0,-0.453125 -0.171875,-0.703125 -0.40625,-0.703125 -0.25,0 -0.515625,0.234375 -0.515625,0.46875 0,0.09375 0.046875,0.203125 0.140625,0.296875 0.171875,0.15625 0.359375,0.421875 0.359375,0.84375 0,0.390625 -0.203125,0.96875 -0.5,1.421875 C 4.8125,-0.953125 4.4375,-0.609375 3.96875,-0.609375 3.40625,-0.609375 3.09375,-0.96875 3,-1.5 c 0.109375,-0.265625 0.34375,-0.90625 0.34375,-1.1875 0,-0.109375 -0.046875,-0.21875 -0.1875,-0.21875 -0.078125,0 -0.1875,0.03125 -0.265625,0.171875 C 2.78125,-2.53125 2.65625,-1.890625 2.65625,-1.53125 2.328125,-1.0625 1.9375,-0.609375 1.3125,-0.609375 c -0.671875,0 -0.875,-0.59375 -0.875,-1.140625 0,-1.25 1.015625,-2.296875 1.015625,-2.421875 0,-0.109375 -0.078125,-0.1875 -0.1875,-0.1875 -0.125,0 -0.203125,0.125 -0.265625,0.21875 -0.5,0.734375 -0.875,1.921875 -0.875,2.828125 0,0.6875 0.21875,1.421875 1.046875,1.421875 0.703125,0 1.171875,-0.5 1.53125,-1.046875 0.09375,0.578125 0.484375,1.046875 1.09375,1.046875 0.78125,0 1.25,-0.609375 1.609375,-1.359375 0.25,-0.484375 0.625,-1.84375 0.625,-2.453125 z m 0,0"
|
||||
transform="translate(590.146,110.99)"
|
||||
id="path1559" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1565">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 3.046875,-2.671875 c -0.25,0.046875 -0.34375,0.234375 -0.34375,0.390625 0,0.1875 0.140625,0.265625 0.265625,0.265625 0.15625,0 0.390625,-0.109375 0.390625,-0.453125 0,-0.46875 -0.53125,-0.609375 -0.90625,-0.609375 -1.046875,0 -2.015625,0.96875 -2.015625,1.9375 0,0.59375 0.40625,1.203125 1.28125,1.203125 1.1875,0 1.734375,-0.6875 1.734375,-0.78125 0,-0.046875 -0.0625,-0.125 -0.125,-0.125 -0.03125,0 -0.046875,0.015625 -0.109375,0.078125 C 2.671875,-0.125 1.859375,-0.125 1.734375,-0.125 c -0.5,0 -0.71875,-0.34375 -0.71875,-0.78125 0,-0.1875 0.09375,-0.953125 0.453125,-1.4375 0.265625,-0.34375 0.625,-0.53125 0.984375,-0.53125 0.09375,0 0.421875,0.015625 0.59375,0.203125 z m 0,0"
|
||||
transform="translate(596.347,112.485)"
|
||||
id="path1563" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
ns1:text="$$-\omega_c$$"
|
||||
transform="matrix(0.22702811,0,0,0.22702811,-68.611477,54.07998)"
|
||||
id="g1631">
|
||||
<g
|
||||
id="g1629">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1619">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 6.5625,-2.296875 c 0.171875,0 0.359375,0 0.359375,-0.203125 0,-0.1875 -0.1875,-0.1875 -0.359375,-0.1875 H 1.171875 c -0.171875,0 -0.34375,0 -0.34375,0.1875 0,0.203125 0.171875,0.203125 0.34375,0.203125 z m 0,0"
|
||||
transform="translate(586.271,110.99)"
|
||||
id="path1617" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1623">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 6.03125,-3.703125 c 0,-0.453125 -0.171875,-0.703125 -0.40625,-0.703125 -0.25,0 -0.515625,0.234375 -0.515625,0.46875 0,0.09375 0.046875,0.203125 0.140625,0.296875 0.171875,0.15625 0.359375,0.421875 0.359375,0.84375 0,0.390625 -0.203125,0.96875 -0.5,1.421875 C 4.8125,-0.953125 4.4375,-0.609375 3.96875,-0.609375 3.40625,-0.609375 3.09375,-0.96875 3,-1.5 c 0.109375,-0.265625 0.34375,-0.90625 0.34375,-1.1875 0,-0.109375 -0.046875,-0.21875 -0.1875,-0.21875 -0.078125,0 -0.1875,0.03125 -0.265625,0.171875 C 2.78125,-2.53125 2.65625,-1.890625 2.65625,-1.53125 2.328125,-1.0625 1.9375,-0.609375 1.3125,-0.609375 c -0.671875,0 -0.875,-0.59375 -0.875,-1.140625 0,-1.25 1.015625,-2.296875 1.015625,-2.421875 0,-0.109375 -0.078125,-0.1875 -0.1875,-0.1875 -0.125,0 -0.203125,0.125 -0.265625,0.21875 -0.5,0.734375 -0.875,1.921875 -0.875,2.828125 0,0.6875 0.21875,1.421875 1.046875,1.421875 0.703125,0 1.171875,-0.5 1.53125,-1.046875 0.09375,0.578125 0.484375,1.046875 1.09375,1.046875 0.78125,0 1.25,-0.609375 1.609375,-1.359375 0.25,-0.484375 0.625,-1.84375 0.625,-2.453125 z m 0,0"
|
||||
transform="translate(594.02,110.99)"
|
||||
id="path1621" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1627">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 3.046875,-2.671875 c -0.25,0.046875 -0.34375,0.234375 -0.34375,0.390625 0,0.1875 0.140625,0.265625 0.265625,0.265625 0.15625,0 0.390625,-0.109375 0.390625,-0.453125 0,-0.46875 -0.53125,-0.609375 -0.90625,-0.609375 -1.046875,0 -2.015625,0.96875 -2.015625,1.9375 0,0.59375 0.40625,1.203125 1.28125,1.203125 1.1875,0 1.734375,-0.6875 1.734375,-0.78125 0,-0.046875 -0.0625,-0.125 -0.125,-0.125 -0.03125,0 -0.046875,0.015625 -0.109375,0.078125 C 2.671875,-0.125 1.859375,-0.125 1.734375,-0.125 c -0.5,0 -0.71875,-0.34375 -0.71875,-0.78125 0,-0.1875 0.09375,-0.953125 0.453125,-1.4375 0.265625,-0.34375 0.625,-0.53125 0.984375,-0.53125 0.09375,0 0.421875,0.015625 0.59375,0.203125 z m 0,0"
|
||||
transform="translate(600.221,112.485)"
|
||||
id="path1625" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
ns1:text="$$1$$"
|
||||
transform="matrix(0.15376711,0,0,0.15376711,-15.951116,50.438951)"
|
||||
id="g1695">
|
||||
<g
|
||||
id="g1693">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1691">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 2.9375,-6.375 c 0,-0.25 0,-0.265625 -0.234375,-0.265625 C 2.078125,-6 1.203125,-6 0.890625,-6 v 0.3125 c 0.203125,0 0.78125,0 1.296875,-0.265625 v 5.171875 c 0,0.359375 -0.03125,0.46875 -0.921875,0.46875 h -0.3125 V 0 c 0.34375,-0.03125 1.203125,-0.03125 1.609375,-0.03125 0.390625,0 1.265625,0 1.609375,0.03125 v -0.3125 h -0.3125 c -0.90625,0 -0.921875,-0.109375 -0.921875,-0.46875 z m 0,0"
|
||||
transform="translate(592.785,110.99)"
|
||||
id="path1689" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
ns1:text="$$0$$"
|
||||
transform="matrix(0.15376711,0,0,0.15376711,-14.883067,62.1811)"
|
||||
id="g1759">
|
||||
<g
|
||||
id="g1757">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1755">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 4.578125,-3.1875 c 0,-0.796875 -0.046875,-1.59375 -0.390625,-2.328125 -0.453125,-0.96875 -1.28125,-1.125 -1.6875,-1.125 -0.609375,0 -1.328125,0.265625 -1.75,1.1875 -0.3125,0.6875 -0.359375,1.46875 -0.359375,2.265625 0,0.75 0.03125,1.640625 0.453125,2.40625 0.421875,0.796875 1.15625,1 1.640625,1 0.53125,0 1.296875,-0.203125 1.734375,-1.15625 0.3125,-0.6875 0.359375,-1.46875 0.359375,-2.25 z M 2.484375,0 C 2.09375,0 1.5,-0.25 1.328125,-1.203125 1.21875,-1.796875 1.21875,-2.71875 1.21875,-3.3125 c 0,-0.640625 0,-1.296875 0.078125,-1.828125 0.1875,-1.1875 0.9375,-1.28125 1.1875,-1.28125 0.328125,0 0.984375,0.1875 1.171875,1.171875 0.109375,0.5625 0.109375,1.3125 0.109375,1.9375 0,0.75 0,1.421875 -0.109375,2.0625 C 3.5,-0.296875 2.9375,0 2.484375,0 Z m 0,0"
|
||||
transform="translate(592.785,110.99)"
|
||||
id="path1753" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.165;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 53.297262,77.83537 V 77.050206"
|
||||
id="path1767" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.165;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 53.297262,78.620534 V 77.83537"
|
||||
id="path1767-5" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.165;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 99.226176,77.83537 V 77.050206"
|
||||
id="path1767-6" />
|
||||
<path
|
||||
style="fill:none;stroke:#000000;stroke-width:0.165;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1"
|
||||
d="M 99.226176,78.620534 V 77.83537"
|
||||
id="path1767-5-2" />
|
||||
<g
|
||||
ns1:text="$$\pi$$"
|
||||
transform="matrix(0.30082143,0,0,0.30082143,-79.731778,46.707953)"
|
||||
id="g1866">
|
||||
<g
|
||||
id="g1864">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1862">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 2.640625,-3.71875 h 1.125 C 3.4375,-2.25 3.34375,-1.8125 3.34375,-1.140625 c 0,0.140625 0,0.40625 0.078125,0.75 0.109375,0.4375 0.21875,0.5 0.359375,0.5 0.203125,0 0.421875,-0.171875 0.421875,-0.375 0,-0.0625 0,-0.078125 -0.0625,-0.21875 -0.296875,-0.71875 -0.296875,-1.375 -0.296875,-1.65625 0,-0.515625 0.078125,-1.0625 0.1875,-1.578125 h 1.125 c 0.140625,0 0.5,0 0.5,-0.34375 0,-0.234375 -0.21875,-0.234375 -0.40625,-0.234375 H 1.90625 c -0.21875,0 -0.59375,0 -1.03125,0.46875 -0.34375,0.390625 -0.609375,0.84375 -0.609375,0.890625 0,0.015625 0,0.109375 0.125,0.109375 0.078125,0 0.09375,-0.046875 0.15625,-0.125 C 1.03125,-3.71875 1.609375,-3.71875 1.8125,-3.71875 H 2.375 C 2.0625,-2.515625 1.53125,-1.3125 1.109375,-0.40625 1.03125,-0.25 1.03125,-0.234375 1.03125,-0.15625 c 0,0.1875 0.15625,0.265625 0.28125,0.265625 0.296875,0 0.375,-0.28125 0.5,-0.640625 C 1.953125,-1 1.953125,-1.015625 2.078125,-1.515625 Z m 0,0"
|
||||
transform="translate(592.257,110.99)"
|
||||
id="path1860" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
ns1:text="$$-\pi$$"
|
||||
transform="matrix(0.30082143,0,0,0.30082143,-125.98592,46.707953)"
|
||||
id="g1946">
|
||||
<g
|
||||
id="g1944">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1938">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 6.5625,-2.296875 c 0.171875,0 0.359375,0 0.359375,-0.203125 0,-0.1875 -0.1875,-0.1875 -0.359375,-0.1875 H 1.171875 c -0.171875,0 -0.34375,0 -0.34375,0.1875 0,0.203125 0.171875,0.203125 0.34375,0.203125 z m 0,0"
|
||||
transform="translate(588.383,110.99)"
|
||||
id="path1936" />
|
||||
</g>
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g1942">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 2.640625,-3.71875 h 1.125 C 3.4375,-2.25 3.34375,-1.8125 3.34375,-1.140625 c 0,0.140625 0,0.40625 0.078125,0.75 0.109375,0.4375 0.21875,0.5 0.359375,0.5 0.203125,0 0.421875,-0.171875 0.421875,-0.375 0,-0.0625 0,-0.078125 -0.0625,-0.21875 -0.296875,-0.71875 -0.296875,-1.375 -0.296875,-1.65625 0,-0.515625 0.078125,-1.0625 0.1875,-1.578125 h 1.125 c 0.140625,0 0.5,0 0.5,-0.34375 0,-0.234375 -0.21875,-0.234375 -0.40625,-0.234375 H 1.90625 c -0.21875,0 -0.59375,0 -1.03125,0.46875 -0.34375,0.390625 -0.609375,0.84375 -0.609375,0.890625 0,0.015625 0,0.109375 0.125,0.109375 0.078125,0 0.09375,-0.046875 0.15625,-0.125 C 1.03125,-3.71875 1.609375,-3.71875 1.8125,-3.71875 H 2.375 C 2.0625,-2.515625 1.53125,-1.3125 1.109375,-0.40625 1.03125,-0.25 1.03125,-0.234375 1.03125,-0.15625 c 0,0.1875 0.15625,0.265625 0.28125,0.265625 0.296875,0 0.375,-0.28125 0.5,-0.640625 C 1.953125,-1 1.953125,-1.015625 2.078125,-1.515625 Z m 0,0"
|
||||
transform="translate(596.132,110.99)"
|
||||
id="path1940" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
<g
|
||||
ns1:text="$$\omega$$"
|
||||
transform="matrix(0.24389371,0,0,0.24389371,-43.032716,51.298738)"
|
||||
id="g2030">
|
||||
<g
|
||||
id="g2028">
|
||||
<g
|
||||
style="fill:#000000;fill-opacity:1"
|
||||
id="g2026">
|
||||
<path
|
||||
style="stroke:none"
|
||||
d="m 6.03125,-3.703125 c 0,-0.453125 -0.171875,-0.703125 -0.40625,-0.703125 -0.25,0 -0.515625,0.234375 -0.515625,0.46875 0,0.09375 0.046875,0.203125 0.140625,0.296875 0.171875,0.15625 0.359375,0.421875 0.359375,0.84375 0,0.390625 -0.203125,0.96875 -0.5,1.421875 C 4.8125,-0.953125 4.4375,-0.609375 3.96875,-0.609375 3.40625,-0.609375 3.09375,-0.96875 3,-1.5 c 0.109375,-0.265625 0.34375,-0.90625 0.34375,-1.1875 0,-0.109375 -0.046875,-0.21875 -0.1875,-0.21875 -0.078125,0 -0.1875,0.03125 -0.265625,0.171875 C 2.78125,-2.53125 2.65625,-1.890625 2.65625,-1.53125 2.328125,-1.0625 1.9375,-0.609375 1.3125,-0.609375 c -0.671875,0 -0.875,-0.59375 -0.875,-1.140625 0,-1.25 1.015625,-2.296875 1.015625,-2.421875 0,-0.109375 -0.078125,-0.1875 -0.1875,-0.1875 -0.125,0 -0.203125,0.125 -0.265625,0.21875 -0.5,0.734375 -0.875,1.921875 -0.875,2.828125 0,0.6875 0.21875,1.421875 1.046875,1.421875 0.703125,0 1.171875,-0.5 1.53125,-1.046875 0.09375,0.578125 0.484375,1.046875 1.09375,1.046875 0.78125,0 1.25,-0.609375 1.609375,-1.359375 0.25,-0.484375 0.625,-1.84375 0.625,-2.453125 z m 0,0"
|
||||
transform="translate(591.996,110.99)"
|
||||
id="path2024" />
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 23 KiB |
|
@ -912,4 +912,217 @@ $$
|
|||
\end{aligned}
|
||||
$$
|
||||
|
||||
> Den spektrale utgangstettheten er produktet av den spektrale inngangstettheten og amplituderesponsen til filteret kvadrert.
|
||||
> Den spektrale utgangstettheten er produktet av den spektrale inngangstettheten og amplituderesponsen til filteret kvadrert.
|
||||
|
||||
## Estimering
|
||||
|
||||
Mangler, kommer kanskje senere
|
||||
|
||||
## Design av digitale filter
|
||||
|
||||
Alle filtere beskrevet under kan lages med funksjonen `filterDesigner` i MatLab.
|
||||
|
||||
Digitale filtere brukes for å modifisere et signal i frekvensdomenet, eller i tidsdomenet.
|
||||
Det kan forskyve signalet, forsterke/fjerne gitte frekvenser, fjerne støy og så videre.
|
||||
|
||||
Det finnes flere måter å implimentere et digitalt filter, men de to hovedtypene er FIR (Finite Impulse Response, Endelig impulsrespons) og IIR (Infinite Impulse Response, Uendelig impulsrespons).
|
||||
|
||||
De fem hovetypene av filter er:
|
||||
|
||||
* Lavpass
|
||||
* Høypass
|
||||
* Båndpass
|
||||
* Båndstopp
|
||||
* Allpass
|
||||
|
||||
Det ideelle lavpassfilteret har skarpe kanter ved knekkfrekvensen.
|
||||
|
||||
![Ideelt filter](figures/idealFilter.svg)
|
||||
|
||||
Impuls responsen til dette filteret er ikke kausal og har uendelig lengde, kompleksitet og forsinkelse.
|
||||
Det er derfor ikke fysisk mulig å implimentere.
|
||||
|
||||
For å konstruere et filter, pleier man å finne løsningen med minst kompleksitet for gitte spesifikasjoner.
|
||||
|
||||
* Det vil forekomme små rippler i passbåndet
|
||||
* Amplituden i stoppbåndet er ikke konstant
|
||||
* Overgansbåndet (ved knekkfrekvensen) må ha en lengde.
|
||||
|
||||
Desto strammere spesifikasjonene er, desto mer komnplekst blir systemet.
|
||||
|
||||
Kausalt filter, med reelle verdier på formen:
|
||||
|
||||
$$ H(z) = \frac{b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}}{1 + a_1 z^{-1} + \cdots + a_N z^{-N}} $$
|
||||
|
||||
|
||||
### FIR mot IIR
|
||||
|
||||
FIR:
|
||||
|
||||
$$
|
||||
\begin{gathered}
|
||||
H(z) = \sum_{k=0}^{M-1} b_k z^{-k} \\
|
||||
\Downarrow\\
|
||||
y[n] = \sum_{k=0}^{M-1} b_k x[n-k]
|
||||
\end{gathered}
|
||||
$$
|
||||
|
||||
* Alltid stabile
|
||||
* Kan oppnå lineær fase
|
||||
* Enkelt å designe med lineære metoder
|
||||
* Enkel å implimentere
|
||||
|
||||
IIR:
|
||||
|
||||
$$
|
||||
\begin{gathered}
|
||||
H(z) = \frac{\sum_{k=1}^{M-1} b_k z^{-k}}{1 + \sum_{k=0}^{N-1} a_k z^{-k}} \\
|
||||
\Downarrow\\
|
||||
y[n] = -\sum_{k=0}^{N-1} a_k y[n-k] + \sum_{k=0}^{M-1} b_k x[n-k]
|
||||
\end{gathered}
|
||||
$$
|
||||
|
||||
* Ferre parametere
|
||||
* Mindre minne
|
||||
* Lav forsinkelse
|
||||
* Mindre komplese utregninger
|
||||
* Typisk designet ved å transformere et analogt filter
|
||||
|
||||
|
||||
### FIR
|
||||
|
||||
For at det skal være mulig å lage et lineært fast filter må ha en symmetrisk impulsrespons.
|
||||
|
||||
Det finnes fire alternativer, der lengden av impulsresponsen er $M$:
|
||||
|
||||
* Type I
|
||||
* M er odd, og $h[n]$ er symmetrisk
|
||||
* Type II
|
||||
* M er lik, og $h[n]$ er symmetrisk
|
||||
* Type III
|
||||
* M er odd, og $h[n]$ er anti-symmetrisk
|
||||
* Type IV
|
||||
* M er lik, og $h[n]$ er anti-symmetrisk
|
||||
|
||||
|
||||
For å designe et FIR filter, kan vi starte med ønsket spesifikasjon, $H(\omega)$, for å så finne impulsresponsen ved å invers foriertransformere.
|
||||
Resultatet har typisk ikke en endelig lengde, så responsen må avgrenses (truncate).
|
||||
|
||||
Ved bruk av et rektangulært vindu, vil vi få den smaleste hovedloben, men mer sidelober (som ikke demper riktig), og den totale dempingen i stoppbåndet er ikke veldig stor.
|
||||
|
||||
#### Equiripple-design
|
||||
|
||||
En ulempe med vindumetoden er at du har lite kontroll over de kritiske frekvensene og dempingen i stoppbåndet.
|
||||
|
||||
Vi ønsker heller å desgine et filter som minimerer det maksimale avviket fra den ønskede spesifikasjonen.
|
||||
|
||||
##### MatLab
|
||||
|
||||
{% highlight matlab %}
|
||||
E = [0 0.3 0.4 1];
|
||||
A = [1 1 0 0];
|
||||
M = 15;
|
||||
B = firpm(M-1, E, A)
|
||||
w = linspace(0,pi,500);
|
||||
H = freqz(B,1,w);
|
||||
figure
|
||||
subplot(2,1,1),
|
||||
stem(B);
|
||||
subplot(2,1,2),
|
||||
plot(w/pi,abs(H));
|
||||
{% endhighlight %}
|
||||
|
||||
|
||||
### IIR
|
||||
|
||||
Brukes mest for bevegende og rekursivt snitt.
|
||||
|
||||
Filteret har både poler og nuller.
|
||||
|
||||
$$ H(z) = \frac{\sum_{k=1}^{M-1} b_k z^{-k}}{1 + \sum_{k=0}^{N-1} a_k z^{-k}} $$
|
||||
|
||||
For en gitt filterorden, vil den kunne ha strammere spesifikasjoner enn FIR.
|
||||
|
||||
Finnes i hovedsak tre måter å designe et IIR filter på.
|
||||
Man kan se på følgende:
|
||||
|
||||
* Systemfunksjonen
|
||||
* Impulsresponsen
|
||||
* Differensiallikninger
|
||||
|
||||
|
||||
Videre ser vi på systemfunksjonen.
|
||||
For å designe et IIR filter, er det ganske annerledes enn et FIR filter.
|
||||
Prosessen er delt opp i fire deler:
|
||||
|
||||
1. Bestem filterspesifikasjoner $\{\omega_p, \omega_s, \delta_1, \delta_2\}$
|
||||
2. Overfør spesifikasjonene til det analoge domenet. $\omega_p \rightarrow \Omega_p$ og $\omega_s\rightarrow \Omega_s$.
|
||||
3. Design et analogt filter med motstander, kondensatorer, spoler osv, ved hjelp av Laplace transformasjonen $H(s)$.
|
||||
4. Deretter bruker vi en funksjon $s=f(z)$ eller $H(z) = H(s)\|_{s=f(z)}$.
|
||||
|
||||
#### Bilinæer transformasjon
|
||||
|
||||
$$ s=\frac{2}{T}\frac{z-1}{z+1} \text{ eller } z=\frac{\frac{2}{T}+s}{\frac{2}{T}-s}$$
|
||||
|
||||
Dersom vi setter $s=\sigma+j\Omega$ og $z=e^j\omega$, får vi en transformasjon for frekvensene også.
|
||||
|
||||
$$
|
||||
\begin{gathered}
|
||||
\omega = 2 \arctan\frac{\Omega T}{2} \\
|
||||
\text{eller} \\
|
||||
\Omega = \frac{2}{T}\tan\frac{\omega}{2}
|
||||
\end{gathered}
|
||||
$$
|
||||
|
||||
I $s$-planet vil innsiden av sirkelen i $z$-planet være hele venste halvplan, eller 2. og 3. kvadrant.
|
||||
Utsiden av sirkelen er hele høyre halvplan, eller 1. og 4. kvadrant.
|
||||
Og enhetssirkelen vil være den imaginære aksen i $s$-planet.
|
||||
|
||||
Tre klasser med IIR filter:
|
||||
|
||||
##### Butterworth
|
||||
* I MatLab: `butter`
|
||||
* Ikke noe ripples i $\|H(\omega)\|$, maksimalt flatt
|
||||
* Glattest overgang fra passbånd til stoppbånd
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
|H(\Omega)|^2 &= \frac{1}{1 + \left(\frac{\Omega}{\Omega_c}\right)^{2N}}\\
|
||||
&= \frac{1}{1 + \epsilon^2 \left(\frac{\Omega}{\Omega_p}\right)^{2N}}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
Her ligger de $N$ polene i en sirkel med radius $\Omega_c$ i $s$-planet. Man velger $N$ basert på hvor flatt man ønsker filteret i passbånd og hvor fort den skal minke. Huskeregel er $-20$dB per dekad per andre filterorden $N$.
|
||||
|
||||
##### Chebyshev
|
||||
|
||||
* Finnes to typer, enten så er det ripples i passbånd, eller i stoppbånd
|
||||
* I MatLab: `cheby1` (ripples i passbånd) og `cheby2` (ripples i stoppbånd)
|
||||
|
||||
Chebychev I:
|
||||
|
||||
$$
|
||||
|H(\Omega)|^2 = \frac{1}{1 + \epsilon^2 T_N^2 \left(\frac{\Omega}{\Omega_c}\right)}
|
||||
$$
|
||||
|
||||
Chebyshev II:
|
||||
|
||||
$$
|
||||
|H(\Omega)|^2 = \frac{1}{1 + \frac{1}{\epsilon^2 T_N^2 \left(\frac{\Omega}{\Omega_c}\right)}}
|
||||
$$
|
||||
|
||||
Der $T_N(x)$ er $N$-te ordens chebyshev poler. $\epsilon$ bestemmer hvor mye ripple det er i passbånd. Polene ligger på en ellipse i $s$-planet.
|
||||
|
||||
##### Elliptisk
|
||||
* I MatLab: `ellip`
|
||||
* Rippler i både stopp- og passbånd
|
||||
* Skarpeste overgang fra pass- til stoppbånd
|
||||
|
||||
$$
|
||||
|H(\Omega)|^2 = \frac{1}{1 + \epsilon^2 U_N^2\left(\frac{\Omega}{\Omega_c}\right)}
|
||||
$$
|
||||
|
||||
Der $U_N$ er den $N$-te ordens Jacobi elliptiske funksjon.
|
||||
$\epsilon$ bestemmer rippel i passbånd.
|
||||
Dersom $N$ er et partall, vil det være mindre rippel i passbånd, men mer i stoppbånd.
|
||||
For $N$ oddetall er det mer rippel i passbånd, men mye flatere i stoppbånd.
|
Loading…
Reference in New Issue