Compare commits

...

6 Commits

Author SHA1 Message Date
7affee0bbc Fix typo 2020-12-17 13:07:25 +01:00
9e3e8a0a75 Merge branch 'dev', added TFE4152 formulas 2020-12-16 17:13:30 +01:00
cc2979aed2 Merge to test new functionality with dev.glados.no 2020-12-11 14:42:59 +01:00
8472817c74 Merge branch 'dev' 2020-12-06 22:29:32 +01:00
ea3c1ddf72 Merge branch 'dev' 2020-12-05 22:03:32 +01:00
a3896c95ca Merge branch 'dev' 2020-12-05 21:56:48 +01:00

View File

@ -85,7 +85,7 @@ $$ C_{sb} = C_{db} = \frac{C_{j0} \left(A_s + \frac{WL}{2}\right)}{\sqrt{1 + \fr
Dette gjelder bare for $V_{GS} > V_{tn}$, $V_{DS} \geq V_\text{eff}$.
$$ I_D = \mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 \underbrace{\left[1 + \lambda(V_{DS} - V_\text{eff})\right]}_\text{body-effect} $$
$$ I_D = \frac{1}{2}\mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 \underbrace{\left[1 + \lambda(V_{DS} - V_\text{eff})\right]}_\text{body-effect} $$
$$ \lambda \propto \frac{1}{L\sqrt{V_{DS} - V_\text{eff} + \Phi_0}} $$