Fix typo
parent
9e3e8a0a75
commit
7affee0bbc
|
@ -85,7 +85,7 @@ $$ C_{sb} = C_{db} = \frac{C_{j0} \left(A_s + \frac{WL}{2}\right)}{\sqrt{1 + \fr
|
||||||
|
|
||||||
Dette gjelder bare for $V_{GS} > V_{tn}$, $V_{DS} \geq V_\text{eff}$.
|
Dette gjelder bare for $V_{GS} > V_{tn}$, $V_{DS} \geq V_\text{eff}$.
|
||||||
|
|
||||||
$$ I_D = \mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 \underbrace{\left[1 + \lambda(V_{DS} - V_\text{eff})\right]}_\text{body-effect} $$
|
$$ I_D = \frac{1}{2}\mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 \underbrace{\left[1 + \lambda(V_{DS} - V_\text{eff})\right]}_\text{body-effect} $$
|
||||||
|
|
||||||
$$ \lambda \propto \frac{1}{L\sqrt{V_{DS} - V_\text{eff} + \Phi_0}} $$
|
$$ \lambda \propto \frac{1}{L\sqrt{V_{DS} - V_\text{eff} + \Phi_0}} $$
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue