MetaPost
Øyvind Skaaden 2020-12-17 13:07:25 +01:00
parent 9e3e8a0a75
commit 7affee0bbc
1 changed files with 1 additions and 1 deletions

View File

@ -85,7 +85,7 @@ $$ C_{sb} = C_{db} = \frac{C_{j0} \left(A_s + \frac{WL}{2}\right)}{\sqrt{1 + \fr
Dette gjelder bare for $V_{GS} > V_{tn}$, $V_{DS} \geq V_\text{eff}$. Dette gjelder bare for $V_{GS} > V_{tn}$, $V_{DS} \geq V_\text{eff}$.
$$ I_D = \mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 \underbrace{\left[1 + \lambda(V_{DS} - V_\text{eff})\right]}_\text{body-effect} $$ $$ I_D = \frac{1}{2}\mu C_{ox} \left(\frac{W}{L}\right) (V_{GS} - V_{tn})^2 \underbrace{\left[1 + \lambda(V_{DS} - V_\text{eff})\right]}_\text{body-effect} $$
$$ \lambda \propto \frac{1}{L\sqrt{V_{DS} - V_\text{eff} + \Phi_0}} $$ $$ \lambda \propto \frac{1}{L\sqrt{V_{DS} - V_\text{eff} + \Phi_0}} $$