15 lines
712 B
TeX
15 lines
712 B
TeX
|
\begin{align}
|
||
|
H &= \frac{V_{ut}}{V_{inn}} \label{eq:frekvensresponsStart}\\
|
||
|
|H| &= \sqrt{\text{Re}\left(H\right)^2 + \text{Im}\left(H\right)^2} \label{eq:amplituderesponsStart}
|
||
|
\end{align}
|
||
|
|
||
|
Vi kan bare regne ut $H$ direkte, fordi vi bare deler vekk $V_{inn}$
|
||
|
|
||
|
\begin{align}
|
||
|
H &= \frac{-j\frac{1}{\omega C} + j\omega L}{R-j\frac{1}{\omega C} + j\omega L} \nonumber\\
|
||
|
&\phantom{1}\vdots \qquad\text{Regner ut og forenkler uttrykket} \nonumber\\
|
||
|
H &= \frac{\left(\omega L - \frac{1}{\omega C}\right)^2}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} + j\frac{R\left(\omega L - \frac{1}{\omega C}\right)}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}
|
||
|
\end{align}
|
||
|
|
||
|
Finner deretter amplituderesponsen
|