Norwegian University of Science and Technology
Department of Electronics and Telecommunications

TTT4120 Digital Signal Processing Suggested Solutions for Problem Set 3

Problem 1

(a) For the $R C$-filter we have

$$
x(t)=R i+y(t) \quad \text { and } \quad i=C \frac{d y(t)}{d t}
$$

and after insertion

$$
x(t)=R C \frac{d y(t)}{d t}+y(t)
$$

Laplace transforming gives

$$
X(s)=R C s Y(s)+Y(s)
$$

from which we get the transfer function

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{1}{R C s+1},
$$

Now consider the $R L$-filter. We have

$$
y(t)=L \frac{d i}{d t} \quad \text { and } \quad x(t)=R i+y(t)
$$

Differentiating the latter equation and substituting in the former equation gives

$$
\begin{aligned}
\frac{d x(t)}{d t} & =R \frac{d i}{d t}+\frac{d y(t)}{d t} \\
& =\frac{R}{L} y(t)+\frac{d y(t)}{d t} .
\end{aligned}
$$

Taking the Laplace transform of the above equation results in

$$
s X(s)=\frac{R}{L} Y(s)+s Y(s),
$$

and the transfer function is

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{s}{s+\frac{R}{L}} .
$$

(b) The frequency response for the RC-filter is given by

$$
H(\Omega)=\left.H(s)\right|_{s=j \Omega}=\frac{1}{j \Omega R C+1} .
$$

The magnitude response is thus given by

$$
|H(\Omega)|=\frac{1}{\sqrt{1+(\Omega R C)^{2}}}
$$

We see that

$$
|H(0)|=1 \quad \text { and } \quad|H(\infty)|=0
$$

and $|H(\Omega)|$ is monotonically decreasing function of Ω, which are the characteristics of a lowpass filter.
The frequency response for the RL-filter is given by

$$
H(\Omega)=\left.H(s)\right|_{s=j \Omega}=\frac{j \Omega}{j \Omega+\frac{R}{L}}
$$

The magnitude response is thus given by

$$
|H(\Omega)|=\frac{\Omega}{\sqrt{\frac{R^{2}}{L^{2}}+\Omega^{2}}}=\frac{1}{\sqrt{\frac{R^{2}}{(\Omega L)^{2}}+1}} .
$$

We see that

$$
|H(0)|=0 \quad \text { and } \quad|H(\infty)|=1,
$$

and $|H(\Omega)|$ is monotonically increasing function of Ω, which is the characteristics of a highpass filter.
(c) The transfer function of the RC-filter can be written as

$$
H(s)=\frac{1 / R C}{s+1 / R C}
$$

The impulse response can be determined simply from the table of common Laplace-transform pairs

$$
h(t)=\frac{1}{R C} e^{-\frac{t}{R C}} u(t)
$$

To find the impulse response of the $R L$-filter, first note that the transfer function can be written

$$
H(s)=1-\frac{R / L}{s+R / L}
$$

Then

$$
h(t)=\delta(t)-\frac{R}{L} e^{-\frac{R}{L} t} u(t)
$$

Alternatively, $h(t)$ can be found in the following way. We have

$$
\begin{aligned}
H(s) & =s \cdot \frac{1}{s+\frac{R}{L}}=s \cdot G(s) \\
& =[s \cdot G(s)-g(0)]+g(0) \cdot 1
\end{aligned}
$$

It follows from the derivation property of the Laplace transform that

$$
h(t)=\mathcal{L}^{-1}\{H(s)\}=\frac{d g(t)}{d t}+g(0) \cdot \delta(t)
$$

Furthermore,

$$
g(t)=\mathcal{L}^{-1}\{G(s)\}=e^{-\frac{R}{L} t} u(t),
$$

which gives

$$
h(t)=-\frac{R}{L} e^{-\frac{R}{L} t} u(t)+\delta(t) .
$$

Problem 2

(a)

$$
H(z)=\frac{1}{1-\frac{2}{3} z^{-1}}
$$

Since the system is causal, the region of convergence (ROC) is defined as $|z|>\left|p_{\max }\right|$, where $p_{\max }$ denotes the pole in the system with the largest magnitude.
The system has a pole at $z=2 / 3$, so the ROC is $|z|>2 / 3$.
The impulse response $h(n)$ can be found by taking the inverse z-transform of the transfer function $H(z)$. From Table 3.3 in the textbook we see that

$$
\mathcal{Z}^{-1}\left(\frac{1}{1-a z^{-1}}\right)=a^{n} u(n) \quad \text { for } R O C:|z|>|a|,
$$

For $z=\frac{2}{3}$ this gives:

$$
h(n)=\left(\frac{2}{3}\right)^{n} u(n)
$$

(b)

$$
H(z)=\frac{1}{\left(1+\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}
$$

Since the system is causal, the region of convergence (ROC) is defined as $|z|>\left|p_{\max }\right|$, where $p_{\max }$ denotes the pole in the system with the largest magnitude.
The system has poles at $z=-1 / 2$ and $z=1$, so the ROC is $|z|>1$.

We can decompose $H(z)$ as

$$
H(z)=\frac{A}{1+\frac{1}{2} z^{-1}}+\frac{B}{1-z^{-1}},
$$

where

$$
A=\left.H(z)\left(1+\frac{1}{2} z^{-1}\right)\right|_{z=-\frac{1}{2}}=\left.\frac{1}{1-z^{-1}}\right|_{z=-\frac{1}{2}}=\frac{1}{1+2}=\frac{1}{3}
$$

and

$$
B=\left.H(z)\left(1-z^{-1}\right)\right|_{z=1}=\left.\frac{1}{1+\frac{1}{2} z^{-1}}\right|_{z=1}=\frac{1}{1+\frac{1}{2}}=\frac{2}{3}
$$

Then

$$
H(z)=\frac{1}{3} \cdot \frac{1}{1+\frac{1}{2} z^{-1}}+\frac{2}{3} \cdot \frac{1}{1-z^{-1}}
$$

and

$$
\begin{aligned}
h(n)=\mathcal{Z}^{-1}\{H(z)\} & =\frac{1}{3} \mathcal{Z}^{-1}\left\{\frac{1}{1+\frac{1}{2} z^{-1}}\right\}+\frac{2}{3} \mathcal{Z}^{-1}\left\{\frac{1}{1-z^{-1}}\right\} \\
& =\frac{1}{3}\left(-\frac{1}{2}\right)^{n} u(n)+\frac{2}{3} u(n),
\end{aligned}
$$

where we have used the fact that ROC is $|z|>1$.
(c)

$$
H(z)=\frac{z^{-1}}{\left(1+\frac{3}{2} z^{-1}\right)\left(1-3 z^{-1}\right)}
$$

Since the system is anti-causal, the region of convergence (ROC) is defined as $|z|<\left|p_{\min }\right|$, where $p_{\text {min }}$ denotes the pole in the system with the smallest magnitude
The system has a pole at $z=-\frac{3}{2}$ and $z=3$, so the ROC is $|z|<\frac{3}{2}$.
We can decompose $H(z)$ as

$$
H(z)=\frac{A}{1+\frac{3}{2} z^{-1}}+\frac{B}{1-3 z^{-1}},
$$

where

$$
A=\left.H(z)\left(1+\frac{3}{2} z^{-1}\right)\right|_{z=-\frac{3}{2}}=\left.\frac{z^{-1}}{1-3 z^{-1}}\right|_{z=-\frac{3}{2}}=-\frac{2}{9}
$$

and

$$
B=\left.H(z)\left(1-3 z^{-1}\right)\right|_{z=3}=\left.\frac{z^{-1}}{1+\frac{3}{2} z^{-1}}\right|_{z=3}=\frac{2}{9} .
$$

Then

$$
H(z)=\frac{-\frac{2}{9}}{1+\frac{3}{2} z^{-1}}+\frac{\frac{2}{9}}{1-3 z^{-1}}
$$

and

$$
h(n)=\frac{2}{9} \cdot\left(\frac{-3}{2}\right)^{n} u(-n-1)-\frac{2}{9} \cdot 3^{n} u(-n-1),
$$

where we have used the fact that ROC is $|z|<\frac{3}{2}$.
(d) A filter is stable if its ROC contains the unit circle $(|z|=1)$. We see that this is satisfied for the filters in a) and c), but not for the filter in b).

Problem 3

(a) The z-transform of $h(n)$ is

$$
\begin{aligned}
H(z) & =\sum_{n=-\infty}^{\infty} h(n) z^{-n} \\
& =\sum_{n=0}^{\infty} \frac{1}{2^{n}} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{1}{2} z^{-1}\right)^{n} \\
& =\frac{1}{1-\frac{1}{2} z^{-1}}, \quad \text { for }|z|>\frac{1}{2}
\end{aligned}
$$

and the z-transform of $x(n)$ is

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x(n) z^{-n} \\
& =\sum_{n=2}^{\infty} z^{-n} \\
& =\frac{z^{-2}}{1-z^{-1}}, \quad \text { for }|z|>1 .
\end{aligned}
$$

(b) Start by noting that we can write $h(n)=\frac{1}{2^{n}} u(n)$ and $x(n)=u(n-2)$. Then

$$
\begin{aligned}
y(n) & =h(n) * x(n) \\
& =\sum_{k=-\infty}^{\infty} h(k) x(n-k) \\
& =\sum_{k=-\infty}^{\infty} \frac{1}{2^{k}} u(k) u(n-2-k) \\
& =\sum_{k=0}^{\infty} \frac{1}{2^{k}} u(n-2-k)
\end{aligned}
$$

Note that $u(n-2-k)=0$ for $n-2-k<0$, i.e. $k>n-2$. Therefore we have

$$
y(n)= \begin{cases}\sum_{k=0}^{n-2}\left(\frac{1}{2}\right)^{k} & n-2 \geq 0 \\ 0 & n-2<0\end{cases}
$$

this gives

$$
y(n)= \begin{cases}\frac{1-\left(\frac{1}{2}\right)^{n-1}}{1-\frac{1}{2}}=2-\left(\frac{1}{2}\right)^{n-2} & n-2 \geq 0 \\ 0 & n-2<0\end{cases}
$$

This can be written as

$$
y(n)=2 u(n-2)-\left(\frac{1}{2}\right)^{n-2} u(n-2)
$$

(c) $X(z)$ and $H(z)$ were computed in 4 a .

Then

$$
\begin{aligned}
Y(z) & =H(z) X(z) \\
& =\frac{z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)} \\
& =z^{-2} Y_{1}(z), \quad \text { for }|z|>1 .
\end{aligned}
$$

where

$$
Y_{1}(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}, \quad|z|>1 .
$$

$y_{1}(n)$ follows from the result in 2 b :

$$
y_{1}(n)=-\left(\frac{1}{2}\right)^{n} u(n)+2 u(n)
$$

Therefore we have

$$
\begin{aligned}
y(n) & =Z^{-1}\left\{z^{-2} Y_{1}(z)\right\}=y_{1}(n-2) \\
& =-\left(\frac{1}{2}\right)^{n-2} u(n-2)+2 u(n-2)
\end{aligned}
$$

which is the the same as we got in (a).

Problem 4

(a) We can find the transfer function $H(z)$ by taking the z -transform on both sides of the difference equation:

$$
\begin{aligned}
& Y(z)=X(z)-X(z) z^{-2}-\frac{1}{4} Y(z) z^{-2} \\
& Y(z)\left(1+\frac{1}{4} z^{-2}\right)=X(z)\left(1-z^{-2}\right) \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{1-z^{-2}}{1+\frac{1}{4} z^{-2}}
\end{aligned}
$$

(b) The poles can be found as follows:

$$
\begin{aligned}
& \left(1+\frac{1}{4} z^{-2}\right)=0 \Rightarrow p_{1}=\frac{1}{2} j, p_{2}=-\frac{1}{2} j \\
& \left|p_{1}\right|=\left|p_{2}\right|=\frac{1}{2}
\end{aligned}
$$

The zeros can be found as follows:

$$
\left(1-z^{-2}\right)=0 \Rightarrow z_{1}=1, z_{2}=-1
$$

The pole-zero plot in the z-plane is shown in the following figure(use following command "zplane([1 $0-1]$, [1 $001 / 4])$)":

Figure 1: Pole-zero plot
(c) Since the filter is causal with poles on the circle with radius $1 / 2$, its ROC is outside of the circle. Since the ROC includes the unit circle, the filter is stable.
(d) For $\omega=0$ we have the zero on the unit circle, so the amplitude response will be zero. Increasing the ω from 0 to $\frac{\pi}{2}$, the distance from the zero
increases, while the distance to the pole p_{1} decreases. The amplitude response will thus increase and reach its maximum at $\omega=\frac{\pi}{2}$. As ω increases further from $\frac{\pi}{2}$ to π, the amplitude response decreases and reaches zero again at $\omega=\pi$.

We conclude that this is a bandpass filter with the passband centred around $\omega=\frac{\pi}{2}$.

