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Suggested Solutions for Problem Set 2

Problem 1

(a) The spectrum X(ω) can be found as follows.

X(ω) =
∞∑

n=−∞
x(n)e−jωn

= ejω + 2 + e−jω

= 2 + 2 cosω

It is shown in Figure 1.
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Figure 1: The spectrum X(ω)
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(b) The spectrum Y (ω) can be found as follows.

Y (ω) =
∞∑

n=−∞
y(n)e−jωn

=

M∑
n=−M

e−jωn l = n+M

=

2M∑
l=0

e−jω(l−M)

= ejωM
2M∑
l=0

e−jωl

= ejωM
1− e−jω(2M+1)

1− e−jω

=
ejωM − e−jω(M+1)

1− e−jω

=
e−

jω
2

e−
jω
2

(
ejω(M+ 1

2
) − e−jω(M+ 1

2
)
)

(
e

jω
2 − e−

jω
2

)
=

sin
(
ω(M + 1

2)
)

sin(ω2 )

The sketch is shown in Figure 2.
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Figure 2: The spectrum Y (ω) for M=10

(c) Because they are even signals.

(d) A sketch of z(n) for N=5 is shown in Figure 3. The Fourier coefficients
are given by:

ck =
1

N

N−1∑
n=0

z(n)e−j2πkn/N , k = 0, · · · , N − 1.
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Figure 3: The signal z(n), periodic extension of x(n)

Note that we sum from 0 up to N − 1. Thus, the first two samples are 2
and 1 respectively, and the last sample is 1. All other samples are 0.
The coefficients could be calculated over any other period.

ck =
1

N

N−1∑
n=0

z(n)e−j2πkn/N

=
1

N
(2 + e−j2πk/N + e−j2πk(N−1)/N )

=
1

N
(2 + e−j2πk/N + e−j2πkej2πk/N )

=
1

N
(2 + e−j2πk/N + ej2πk/N )

=
1

N
(2 + 2 cos(2πk/N))

The Fourier coefficients are displayed in Figure 4.

(e) We have the following.

X(f) = 2 + 2 cos(2πf)

ck =
1

N
(2 + 2 cos(2πk/N))
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Figure 4: The Fourier coefficients ck of z(n) for k = −5, ..., 5

Thus, we see that

ck =
1

N
X

(
k

N

)
.

This means that the Fourier coefficients are (scaled) samples of the
continuous spectrum X(f). This always holds true: a periodic extension
in the time domain equals sampling in the frequency domain.

Problem 2

(a) For the first case, we use the time-shift property of the DTFT, and get

X1(ω) = ej3ωX(ω)

(b) For the second case, we use the time-reversal property of the DTFT, and
it follows that

X2(ω) = X(−ω)

(c) For the third case notice that:

x3(n) = x(3− n) = x(−(n− 3)) = x2(n− 3)

so that by the time-reversal and time-shift properties, it follows that

X3(ω) = e−j3ωX2(ω) = e−j3ωX(−ω)

(d) For the last case, we have that

X4(ω) = DTFT{x(n) ∗ w(n)} = X(ω)W (ω).
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Problem 3

(a) By taking the DTFT of both sides of the first difference equation, we get

Y (ω) = X(ω) + 2e−jωX(ω) + e−2jωX(ω)

H1(ω) =
Y (ω)

X(ω)
= 1 + 2e−jω + e−2jω

= e−jω(ejω + 2 + e−jω)

= e−jω(2 + 2 cosω).

And for the second case, we get

Y (ω) = −0.9Y (ω)e−jω +X(ω)

H2(ω) =
Y (ω)

X(ω)
=

1

1 + 0.9e−jω
.

(b) We already have the frequency response H1(ω) on polar form. Thus, the
magnitude is simply

|H1(ω)| = 2 + 2 cosω.

Since 2 + 2 cosω ≥ 0 for all ω, the phase is simply

Θ1(ω) = ∡H1(ω) = −ω.

The magnitude response of the second system can be found as follows.

|H2(ω)| =
∣∣∣∣ 1

1 + 0.9e−jω

∣∣∣∣
=

1

|1 + 0.9e−jω|

=
1√

(1 + 0.9 cosω)2 + (0.9 sinω)2

=
1√

1 + 1.8 cosω + 0.81

To find the phase, we can write H2(ω) as

H2(ω) =
1

W (ω)
,

where W (ω) = 1 + 0.9e−jω. Then, the phase is given by

Θ2(ω) = ∡H2(ω) = −∡W (ω).

Since Re{W (ω)} > 0 for all ω, we have

∡H2(ω) = − tan−1

(
−0.9 sinω

1 + 0.9 cosω

)
= tan−1

(
0.9 sinω

1 + 0.9 cosω

)
.

5



We notice that all magnitude functions are even and that all phase
functions are odd. This is a property of real signals.

(c) The frequency response of the first filter can be found and plotted by
the following code.

[H_1, w] = freqz([1 2 1], [1]);

subplot(2, 1, 1);

plot(w, abs(H_1));

xlabel(’Angular frequency, w’);

ylabel(’Magnitude’);

subplot(2, 1, 2);

plot(w, angle(H_1));

xlabel(’Angular frequency, w’);

ylabel(’Phase’);

For the second filter, we change the freqz command as follows.

[H_2, w] = freqz([1], [1 0.9]);

This gives the plots shown in Figures 5 and 6.
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Figure 5: Magnitude and phase response of H1(ω)

(d) From the plots of the magnitude responses, we can see that the first
filter attenuates high frequencies more than low frequencies. Thus, this
is a lowpass filter. The second filter attenuates low frequencies more
than high frequencies. Thus, this is a highpass filter.
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Figure 6: Magnitude and phase response of H2(ω)

(e) The response of a LTI-system H(ω) = |H(ω)|ejΘ(ω) to a sinusoidal input
signal x(n) = A cos(ω0n+ θ) equals

y(n) = A|H(ω0)| cos(ω0n+ θ +Θ(ω0)).

Thus, the output of the first system is

y1(n) =
1

2
|H1(

π

2
)| cos(π

2
n+

π

4
+ Θ1(

π

2
))

=
1

2
· 2 cos(π

2
n+

π

4
− π

2
)

= cos(
π

2
n− π

4
).

Likewise, the output of the second system is

y2(n) =
1

2
|H2(

π

2
)| cos(π

2
n+

π

4
+ Θ2(

π

2
))

=
1

2

1√
1.81 + 1.8 cos(π2 )

cos(
π

2
n+

π

4
+ tan−1(

0.9 sin(π2 )

1 + 0.9 cos(π2 )
)

=
1

2

1√
1.81

cos(
π

2
n+

π

4
+ tan−1(

9

10
))

≈ 1

2

1√
1.81

cos(
π

2
n+ 1.52)).
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Problem 4

(a) The spectra of the sampled signals are shown in Figures 7 and 8. The
latter has a wider range of frequencies than the required f ∈ [−1

2 ,
1
2 ] to

help making difference between alias components and signal
components. The theory behind this is in ch.6.

Figure 7: Spectrum of the signal x(n) when Fs = 4000Hz

Figure 8: Spectrum of the signal x(n) when Fs = 1500Hz

(b) Matlab-code for generating the signal corresponding to Fs = 4000:

t = [0:1/4000:1-1/4000];

cos4000 = cos(1000*2*pi*t);
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And for the signal corresponding to Fs = 1500:

t = [0:1/1500:1-1/1500];

cos1500 = cos(1000*2*pi*t);

The sounds can be played with the commands:

sound(cos4000,4000);

pause(1);

sound(cos1500,1500);

They sound different because the signal incurred aliasing in the
sampling. To be able to reconstruct xa(t) from a sampled signal, the
sampling theorem requires that Fs > 2Fmax, where Fmax is the highest
frequency component of the signal. In this case,the signal has only one
frequency component, at 1000Hz. Thus, we require:

Fs > 2000Hz

9


