Norwegian University of Science and Technology Department of Electronics and Telecommunications

TTT4120 Digital Signal Processing Suggested Solutions for Problem Set 2

Problem 1

(a) The spectrum $X(\omega)$ can be found as follows.

$$
\begin{aligned}
X(\omega) & =\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n} \\
& =e^{j \omega}+2+e^{-j \omega} \\
& =2+2 \cos \omega
\end{aligned}
$$

It is shown in Figure 1.

Figure 1: The spectrum $X(\omega)$
(b) The spectrum $Y(\omega)$ can be found as follows.

$$
\begin{aligned}
Y(\omega) & =\sum_{n=-\infty}^{\infty} y(n) e^{-j \omega n} \\
& =\sum_{n=-M}^{M} e^{-j \omega n} \quad l=n+M \\
& =\sum_{l=0}^{2 M} e^{-j \omega(l-M)} \\
& =e^{j \omega M} \sum_{l=0}^{2 M} e^{-j \omega l} \\
& =e^{j \omega M} \frac{1-e^{-j \omega(2 M+1)}}{1-e^{-j \omega}} \\
& =\frac{e^{j \omega M}-e^{-j \omega(M+1)}}{1-e^{-j \omega}} \\
& =\frac{e^{-\frac{j \omega}{2}}}{e^{-\frac{j \omega}{2}}} \frac{\left(e^{j \omega\left(M+\frac{1}{2}\right)}-e^{-j \omega\left(M+\frac{1}{2}\right)}\right)}{\left(e^{\frac{j \omega}{2}}-e^{-\frac{j \omega}{2}}\right)} \\
& =\frac{\sin \left(\omega\left(M+\frac{1}{2}\right)\right)}{\sin \left(\frac{\omega}{2}\right)}
\end{aligned}
$$

The sketch is shown in Figure 2.

Figure 2: The spectrum $Y(\omega)$ for $\mathrm{M}=10$
(c) Because they are even signals.
(d) A sketch of $z(n)$ for $\mathrm{N}=5$ is shown in Figure 3. The Fourier coefficients are given by:

$$
c_{k}=\frac{1}{N} \sum_{n=0}^{N-1} z(n) e^{-j 2 \pi k n / N}, \quad k=0, \cdots, N-1 .
$$

Figure 3: The signal $z(n)$, periodic extension of $x(n)$

Note that we sum from 0 up to $N-1$. Thus, the first two samples are 2 and 1 respectively, and the last sample is 1 . All other samples are 0 . The coefficients could be calculated over any other period.

$$
\begin{aligned}
c_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} z(n) e^{-j 2 \pi k n / N} \\
& =\frac{1}{N}\left(2+e^{-j 2 \pi k / N}+e^{-j 2 \pi k(N-1) / N}\right) \\
& =\frac{1}{N}\left(2+e^{-j 2 \pi k / N}+e^{-j 2 \pi k} e^{j 2 \pi k / N}\right) \\
& =\frac{1}{N}\left(2+e^{-j 2 \pi k / N}+e^{j 2 \pi k / N}\right) \\
& =\frac{1}{N}(2+2 \cos (2 \pi k / N))
\end{aligned}
$$

The Fourier coefficients are displayed in Figure 4.
(e) We have the following.

$$
\begin{aligned}
X(f) & =2+2 \cos (2 \pi f) \\
c_{k} & =\frac{1}{N}(2+2 \cos (2 \pi k / N))
\end{aligned}
$$

Figure 4: The Fourier coefficients c_{k} of $z(n)$ for $k=-5, \ldots, 5$

Thus, we see that

$$
c_{k}=\frac{1}{N} X\left(\frac{k}{N}\right)
$$

This means that the Fourier coefficients are (scaled) samples of the continuous spectrum $X(f)$. This always holds true: a periodic extension in the time domain equals sampling in the frequency domain.

Problem 2

(a) For the first case, we use the time-shift property of the DTFT, and get

$$
X_{1}(\omega)=e^{j 3 \omega} X(\omega)
$$

(b) For the second case, we use the time-reversal property of the DTFT, and it follows that

$$
X_{2}(\omega)=X(-\omega)
$$

(c) For the third case notice that:

$$
x_{3}(n)=x(3-n)=x(-(n-3))=x_{2}(n-3)
$$

so that by the time-reversal and time-shift properties, it follows that

$$
X_{3}(\omega)=e^{-j 3 \omega} X_{2}(\omega)=e^{-j 3 \omega} X(-\omega)
$$

(d) For the last case, we have that

$$
X_{4}(\omega)=\operatorname{DTFT}\{x(n) * w(n)\}=X(\omega) W(\omega)
$$

Problem 3

(a) By taking the DTFT of both sides of the first difference equation, we get

$$
\begin{aligned}
Y(\omega) & =X(\omega)+2 e^{-j \omega} X(\omega)+e^{-2 j \omega} X(\omega) \\
H_{1}(\omega) & =\frac{Y(\omega)}{X(\omega)}=1+2 e^{-j \omega}+e^{-2 j \omega} \\
& =e^{-j \omega}\left(e^{j \omega}+2+e^{-j \omega}\right) \\
& =e^{-j \omega}(2+2 \cos \omega) .
\end{aligned}
$$

And for the second case, we get

$$
\begin{aligned}
Y(\omega) & =-0.9 Y(\omega) e^{-j \omega}+X(\omega) \\
H_{2}(\omega) & =\frac{Y(\omega)}{X(\omega)}=\frac{1}{1+0.9 e^{-j \omega}} .
\end{aligned}
$$

(b) We already have the frequency response $H_{1}(\omega)$ on polar form. Thus, the magnitude is simply

$$
\left|H_{1}(\omega)\right|=2+2 \cos \omega .
$$

Since $2+2 \cos \omega \geq 0$ for all ω, the phase is simply

$$
\Theta_{1}(\omega)=\measuredangle H_{1}(\omega)=-\omega .
$$

The magnitude response of the second system can be found as follows.

$$
\begin{aligned}
\left|H_{2}(\omega)\right| & =\left|\frac{1}{1+0.9 e^{-j \omega}}\right| \\
& =\frac{1}{\left|1+0.9 e^{-j \omega}\right|} \\
& =\frac{1}{\sqrt{(1+0.9 \cos \omega)^{2}+(0.9 \sin \omega)^{2}}} \\
& =\frac{1}{\sqrt{1+1.8 \cos \omega+0.81}}
\end{aligned}
$$

To find the phase, we can write $H_{2}(\omega)$ as

$$
H_{2}(\omega)=\frac{1}{W(\omega)},
$$

where $W(\omega)=1+0.9 e^{-j \omega}$. Then, the phase is given by

$$
\Theta_{2}(\omega)=\measuredangle H_{2}(\omega)=-\measuredangle W(\omega) .
$$

Since $\operatorname{Re}\{W(\omega)\}>0$ for all ω, we have

$$
\begin{aligned}
\measuredangle H_{2}(\omega) & =-\tan ^{-1}\left(\frac{-0.9 \sin \omega}{1+0.9 \cos \omega}\right) \\
& =\tan ^{-1}\left(\frac{0.9 \sin \omega}{1+0.9 \cos \omega}\right) .
\end{aligned}
$$

We notice that all magnitude functions are even and that all phase functions are odd. This is a property of real signals.
(c) The frequency response of the first filter can be found and plotted by the following code.

```
[H_1, w] = freqz([1 2 1], [1]);
subplot(2, 1, 1);
plot(w, abs(H_1));
xlabel('Angular frequency, w');
ylabel('Magnitude');
subplot(2, 1, 2);
plot(w, angle(H_1));
xlabel('Angular frequency, w');
ylabel('Phase');
```

For the second filter, we change the freqz command as follows.
[H_2, w] = freqz([1], [1 0.9]);
This gives the plots shown in Figures 5 and 6.

Figure 5: Magnitude and phase response of $H_{1}(\omega)$
(d) From the plots of the magnitude responses, we can see that the first filter attenuates high frequencies more than low frequencies. Thus, this is a lowpass filter. The second filter attenuates low frequencies more than high frequencies. Thus, this is a highpass filter.

Figure 6: Magnitude and phase response of $H_{2}(\omega)$
(e) The response of a LTI-system $H(\omega)=|H(\omega)| e^{j \Theta(\omega)}$ to a sinusoidal input signal $x(n)=A \cos \left(\omega_{0} n+\theta\right)$ equals

$$
y(n)=A\left|H\left(\omega_{0}\right)\right| \cos \left(\omega_{0} n+\theta+\Theta\left(\omega_{0}\right)\right) .
$$

Thus, the output of the first system is

$$
\begin{aligned}
y_{1}(n) & =\frac{1}{2}\left|H_{1}\left(\frac{\pi}{2}\right)\right| \cos \left(\frac{\pi}{2} n+\frac{\pi}{4}+\Theta_{1}\left(\frac{\pi}{2}\right)\right) \\
& =\frac{1}{2} \cdot 2 \cos \left(\frac{\pi}{2} n+\frac{\pi}{4}-\frac{\pi}{2}\right) \\
& =\cos \left(\frac{\pi}{2} n-\frac{\pi}{4}\right)
\end{aligned}
$$

Likewise, the output of the second system is

$$
\begin{aligned}
y_{2}(n) & =\frac{1}{2}\left|H_{2}\left(\frac{\pi}{2}\right)\right| \cos \left(\frac{\pi}{2} n+\frac{\pi}{4}+\Theta_{2}\left(\frac{\pi}{2}\right)\right) \\
& =\frac{1}{2} \frac{1}{\sqrt{1.81+1.8 \cos \left(\frac{\pi}{2}\right)}} \cos \left(\frac{\pi}{2} n+\frac{\pi}{4}+\tan ^{-1}\left(\frac{0.9 \sin \left(\frac{\pi}{2}\right)}{1+0.9 \cos \left(\frac{\pi}{2}\right)}\right)\right. \\
& =\frac{1}{2} \frac{1}{\sqrt{1.81}} \cos \left(\frac{\pi}{2} n+\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{10}\right)\right) \\
& \left.\approx \frac{1}{2} \frac{1}{\sqrt{1.81}} \cos \left(\frac{\pi}{2} n+1.52\right)\right) .
\end{aligned}
$$

Problem 4

(a) The spectra of the sampled signals are shown in Figures 7 and 8. The latter has a wider range of frequencies than the required $f \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ to help making difference between alias components and signal components. The theory behind this is in ch.6.

Figure 7: Spectrum of the signal $x(n)$ when $F_{s}=4000 \mathrm{~Hz}$

Figure 8: Spectrum of the signal $x(n)$ when $F_{s}=1500 \mathrm{~Hz}$
(b) Matlab-code for generating the signal corresponding to $F_{s}=4000$:

```
t = [0:1/4000:1-1/4000];
cos4000 = cos(1000*2*pi*t);
```

And for the signal corresponding to $F_{s}=1500$:

```
t = [0:1/1500:1-1/1500];
cos1500 = cos(1000*2*pi*t);
```

The sounds can be played with the commands:

```
sound(cos4000,4000);
pause(1);
sound(cos1500,1500);
```

They sound different because the signal incurred aliasing in the sampling. To be able to reconstruct $x_{a}(t)$ from a sampled signal, the sampling theorem requires that $F_{s}>2 F_{\max }$, where $F_{\max }$ is the highest frequency component of the signal. In this case,the signal has only one frequency component, at 1000 Hz . Thus, we require:

$$
F_{s}>2000 \mathrm{~Hz}
$$

