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TTT4120 Digital Signal Processing
Suggested Solutions for Problem Set 9

Problem 1

(a) The impulse response can be found as follows.

hd(n) = IDTFT{Hd(f)}

=

∫ 1
2

− 1
2

Hd(f)e
j2πfndf

=

∫ fc

−fc

ej2πfndf

=
1

2πjn

[
ej2πfn

]fc
−fc

, n ̸= 0

=
ej2πfcn − e−j2πfcn

2πjn
, n ̸= 0

=
sin(2πfcn)

πn
, n ̸= 0

For n = 0, we get

hd(0) =

∫ fc

−fc

1df = 2fc.

(b) First, in order to obtain a causal filter after windowing, we shift hd(n)
(N − 1)/2 samples to the right (we assume that N is an odd number).
Then, we multiply by w(n), and obtain the following unit sample
response

h(n) = hd

(
n− N − 1

2

)
w(n) =


sin[2πfc(n−N−1

2 )]
π(n−N−1

2 )
· w(n) n ̸= N−1

2

2fc · w
(
N−1
2

)
n = N−1

2 .

(c) The required MATLAB function can be implemented as follows.
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function h = oppg1c (w, fc)

N = length(w);

n = (0:N-1)’;

h = sin(2*pi*fc*(n-(N-1)/2))./ (pi*(n - (N-1)/2)).*w;

h((N+1)/2) = 2*fc*w((N+1)/2);

% Note that MATLAB indexes from 1 and not 0

end

(d) The magnitude response for the filters are shown in Figure 1. By using
rectangular window the resulting filter will have smaller transient band
but at the same time it will have bigger passband and stopband ripples.
The following code is used to test the function in 1 (c) and plot Fig 1.

clc

clear all

close all

N = 31; fc = 0.2;

w1=ones(N,1); % Rrectangualr window

w2 = hamming(N); % Hamming windows

h1 = oppg1c(w1, fc);

h2 = oppg1c(w2, fc);

[H1,w1]=freqz(h1,1);

[H2,w2]=freqz(h2,1);

figure()

subplot(2, 1, 1);

plot(w1/2/pi,abs(H1),’k’)

ylabel(’Magnitude response’)

xlabel(’f’)

title(’Rectangular window and design based on 1(a)’)

grid on

subplot(2, 1, 2);

plot(w2/2/pi,abs(H2),’k’)

ylabel(’Magnitude response’)

xlabel(’f’)

title(’Hamming window and design based on 1(a)’)

grid on

(e) We can use the following MATLAB code to generate and plot the
magnitude responses of the filters. The results when plotted are equal to
those from 1(c).

N=31;

fc=0.2;

w1=ones(N,1);

% use rectangular window

h1=fir1(N-1,fc*2, w1);

2



0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

M
ag

ni
tu

de
 r

es
po

ns
e

f

Rectangular window and design based on 1(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

M
ag

ni
tu

de
 r

es
po

ns
e

f

Hamming window and design based on 1(a)

Figure 1: Filters designed using the windowing method from 1(a)

% hamming window is default

h2=fir1(N-1,fc*2);

Problem 2

(a) The cut-off frequency can be found by solving |Ha(Ωc)| = 1/
√
2. Thus,

we get ∣∣∣∣ 1/RC

jΩc + 1/RC

∣∣∣∣ = 1√
2

1/RC

|jΩc + 1/RC|
=

1√
2√

Ω2
c + (1/RC)2 =

√
2

RC
⇒

Ω2
c +

1

(RC)2
=

2

(RC)2
⇒

Ωc =
1

RC
,

since Ωc is, by definition, a positive value.

(b) Since s = jΩ is mapped into z = ejω by the bilinear transform, we have
that

jΩ =
2

T

1− e−jω

1 + e−jω
.

Now, we multiply both the numerator and denominator on the right by
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Figure 2: Filters designed using the windowing method using MATLAB’s fir1 func-
tions

ejω/2, and get the following.

Ω =
2

T

1

j

(1− e−jω)ejω/2

(1 + e−jω)ejω/2

=
2

T

1

j

ejω/2 − e−jω/2

ejω/2 + e−jω/2

=
2

T

ejω/2 − e−jω/2

j

1

ejω/2 + e−jω/2

=
2

T

2 sin(ω/2)

2 cos(ω/2)

=
2

T
tan

(ω
2

)
(c) We can use the frequency transformation expression to get the following

relationship between analog and digital cut-off frequency

Ωc =
2

T
tan

(ωc

2

)
.
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In addition, we know that Ωc = 1/RC. Thus, we get the following.

H(z) = Ha(s)|s= 2
T

1−z−1

1+z−1

=
1/RC

2
T

1−z−1

1+z−1 + 1/RC

=
Ωc

2
T

1−z−1

1+z−1 +Ωc

=
2
T tan

(
ωc
2

)
2
T

1−z−1

1+z−1 + 2
T tan

(
ωc
2

)
=

tan
(
ωc
2

)
1−z−1

1+z−1 + tan
(
ωc
2

)
=

tan
(
ωc
2

)
(1 + z−1)

1− z−1 + tan
(
ωc
2

)
+ tan

(
ωc
2

)
z−1

=
tan

(
ωc
2

)
(1 + z−1)

1 + tan
(
ωc
2

)
+ (tan

(
ωc
2

)
− 1)z−1

=

tan(ωc
2 )

tan(ωc
2 )+1

(1 + z−1)

1 +
tan(ωc

2 )−1

tan(ωc
2 )+1

z−1

By inserting ωc = 0.2π we get

H(z) =
0.245(1 + z−1)

1− 0.51z−1
.

Plots of the magnitude responses of the analog prototype filter, and the
resulting digital filter are shown in Figure 3. The magnitude responses
are plotted as functions of F and f , respectively.
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Figure 3: Magnitude responses of the prototype filter and the designed filter
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Note that for the analog filter, the frequency axis is not uniquely
specified since we have not specified T . For the plot in Figure 3, we have
chosen an analog prototype filter with cut-off frequency Fc = 1000 Hz
(Ωc = 2000π rad/s). The corresponding value of T can be found as
follows.

2000π =
2

T
tan

(
0.2π

2

)
T =

2

2000π
tan

(
0.2π

2

)
≈ 1.75 · 10−6

We see that the resulting digital filter is a lowpass filter with a similar
shape as the prototype analog filter. However the two magnitude
spectra differ especially at higher frequencies due to the nonlinear
compression of the physical frequency axis into digital frequencies in the
range [0, 12 ]. Furthermore, the magnitude response of the resulting

digital filter is approximately equal to 1/
√
2 ≈ 0.707 at fc = 0.1, which

corresponds to ωc = 2πfc = 0.2π, as required in the design specifications.
The design specification have thus been met.

Problem 3

(a) The magnitude response of a second order Butterworth filter is given by

|Ha(Ω)| =
1√

1 + (Ω/Ωc)4
,

where Ωc is the cut-off frequency of the filter. Therefore we have to show
that the magnitude response of the given filter can be written as

|Ha(Ω)| =
1√

1 + Ω4
,

The frequency response is given by

Ha(Ω) = Ha(s)

∣∣∣∣
s=jΩ

=
1

−Ω2 +
√
2jΩ+ 1

,

and the magnitude response is thus given by

|Ha(Ω)| =
1

| − Ω2 +
√
2jΩ+ 1|

=
1√

(1− Ω2)2 + 2Ω2
=

1√
Ω4 + 1

.
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Alternatively we can find the cut-off frequency by solving∣∣∣∣ 1

−Ω2
c +

√
2jΩc + 1

∣∣∣∣ = 1√
2∣∣∣∣− Ω2

c +
√
2jΩc + 1

∣∣∣∣ = √
2√

(1− Ω2
c)

2 + 2Ω2
c =

√
2√

Ω4
c + 1 =

√
2

Ωc = 1

(b) The plot of the magnitude response is shown in Figure 4. The MATLAB
code is given below.

num = 1;

den = [1, sqrt(2), 1];

[Ha,Omega]=freqs(num,den);

plot(Omega,20*log10(abs(Ha)))
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Figure 4: Magnitude response for Ha(s)

(c) The poles of the filter are found by solving the following equation

s2 +
√
2s+ 1 = 0.

This gives

p1 =
1√
2
(−1 + j)

p2 =
1√
2
(−1− j)

Note that p2 = p∗1.
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(d) We will now use the impulse invariance method to convert the analog
filter to a digital IIR filter.
We can write Ha(s) as

Ha(s) =
1

(s− p1)(s− p2)
.

By using the partial fraction expansion this can be written as

Ha(s) =
c1

s− p1
+

c2
s− p2

,

where

c1 = Ha(s)(s− p1)

∣∣∣∣
s=p1

=
1

p1 − p2
=

√
2

2 j
= −

√
2

2
j.

Since p2 = p∗1, we have that

c2 = c∗1 = −c1 =

√
2

2
j

We can then find H(z) as

H(z) =
2∑

k=1

ck
1− epkT z−1

=
c1

1− ep1T z−1
− c1

1− ep
∗
1T z−1

=
c1(e

p1T − ep
∗
1T )z−1

1− (ep1T + ep
∗
1T )z−1 + e(p1+p∗1)T z−2

=

√
2e

− T√
2 sin( T√

2
)z−1

1− 2e
− T√

2 cos( T√
2
)z−1 + e−

√
2T z−2

The constant T is found from the frequency mapping ω = ΩT , and the
requirement that the cut-off frequency of the analogue filter Ωc should
map to the required cut-off frequencies of the digital filters, ωc1 and ωc2.
This gives

T1 =
ωc1

Ωc
= 0.25

T2 =
ωc2

Ωc
= 1.2

(e) Magnitude responses of the digital IIR filters are shown in Figures 5 and
6 together with the corresponding part of the of the magnitude response
of the prototype filter. (Notice that ω = π in Figure 5 corresponds to
Ω = π

T1
= 15.7 and ω = π in Figure 6 corresponds to Ω = π

T2
= 2.6.) The

MATLAB code is given below.

T = 0.2;

num = [0, sqrt(2)*exp(-T/sqrt(2))*sin(T/sqrt(2))]; %

den = [1, -2*exp(-T/sqrt(2))*cos(T/sqrt(2)), exp(-sqrt(2)*T)];

[H1,w]=freqz(num,den);

plot(w,20*log10(abs(H1)/max(abs(H1))))
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(Same for T = 1.2)
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Figure 5: Magnitude response for H(z) with ωc = 0.2
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Figure 6: Magnitude response for H(z) with ωc = 1.2

We can observe that the filter in Figure 5 has a magnitude response that
is almost the same as the analog filter. For the other filter with T = 1.2
we can see that the attenuation its much lower then the prototype filter.
This is due to aliasing in the digital filter. We can also observe that in
the filter with T = 0.2 the cut-off frequency is correct at wc = 0.2, but
for the filter with T = 1.2 aliasing has caused the cut-off frequency to
shift to approximated wc = 1.35.
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Problem 4

(a) Inspecting the magnitude response for the Hamming window method we
can see that the specifications are met at an filter order of approximated
N = 360. Before this we are not able to get a -50dB at 4650Hz. The
magnitude response is shown in Figure 7. The right part of the figure
shows a closer view of the magnitude response in the passband. The
phase response is shown in Figure 8. From this figure we can see that
the phase is linear.
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Figure 7: Magnitude response of the FIR filter designed by windowing method (Ham-
ming window). Filter order is 360.
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Figure 8: Phase response of the FIR filter designed by windowing method (Hamming
window).

(b) We use the fdatool and find that the minimum filter order that satisfies
the specifications is N = 200. The magnitude response of this filter is
shown in Figure 9. The right part of the figure shows a closer view of
the magnitude response in the passband. The phase response is shown
in Figure 10. From this figure we can see that the phase is linear.
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Figure 9: Magnitude response of the FIR filter designed by optimal equripple. Filter
order is 200.
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Figure 10: Phase response of the FIR filter designed by optimal equripple.

(c) We use the fdatool and find that the minimum filter order that satisfies
the specifications is N = 10. The magnitude response of this filter is
shown in Figure 11. The right part of the figure shows a closer view of
the magnitude response in the passband. The phase response is shown
in Figure 12.

(d) The windowing method has the advantage that it is very simple.
However, it is also the method that results in the filter of highest order.
The optimal equiripple design method is more complicated, but it
produces a linear phase FIR filter with lowest possible order that meets
the given specifications. This is achieved by controlling the size of the
errors in the passband and stopband at the same time. Both windowing
method and the equiripple method produce filters with linear phase
response.

The elliptic IIR filter has significantly lower filter order than both the
above methods. Thus, compared to the FIR filters, this filter is less
computationally demanding to implement, requires less memory, and
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Figure 11: Magnitude response of the elliptic IIR filter. Filter order is 10.
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Figure 12: Phase response of the elliptic IIR filter.

allows lower delay. The disadvantage of this filter is that we cannot
obtain linear phase response.

(e) We can hear that we remove the noise when we use a high filter length(a
high stopband attenuation).

Problem 5

(a) The MATLAB code from Problem 1e) can be used to generate FIR
filters of a given length N using a rectangular and a Hamming window.

In the case of rectangular windows, the lowest filter length that satisfies
the requirements is N = 576. The magnitude response is shown in
Figure 13. The right part of the figure shows a closer view of the
magnitude response in the passband. As can be seen from these figures,
the specifications have been met. The phase response is shown in
Figure 14. Because of the high order of the filter, it is difficult to
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interpret this plot, but if one looks at a smaller range of frequencies (i.e.
zoom in on a part of the plot), one will see that the phase is linear.

In the case of Hamming window, N = 35 satisfies the requirements. The
magnitude response is shown in Figure 15. The right part of the figure
shows a closer view of the magnitude response in the passband. As can
be seen from these figures, the specifications have been met. The phase
response is shown in Figure 16. From this figure we can see that the
phase is linear.
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Figure 13: Magnitude response of the FIR filter designed by windowing method
(rectangular window). Filter length is 576.
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Figure 14: Phase response of the FIR filter designed by windowing method (rectan-
gular window). Filter length is 576.
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Figure 15: Magnitude response of the FIR filter designed by windowing method
(Hamming window). Filter length is 35.
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Figure 16: Phase response of the FIR filter designed by windowing method (Hamming
window). Filter length is 35.

(b) The optimal linear phase FIR filter is designed using MATLAB function
firpm. This filter has the lowest possible order among all FIR filters
that satisfy the specifications.

The function firpmord can give us an estimate of the filter order N .
This function can also be used to determine the parameters needed for
the firpm function. When using this function, we must specify
maximum absolute error δ1 in the passband and stopband. Maximum
absolute error in the passband can be calculated from rp as follows.

rp = 20 log

(
1 + δ1
1− δ1

)
1 + δ1
1− δ1

= 10rp/20

δ1(1 + 10rp/20) = 10rp/20 − 1

δ1 =
10rp/20 − 1

1 + 10rp/20

δ1 =
100.4/20 − 1

1 + 100.4/20
= 0.023
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Maximum absolute error δ2 in the stopband can be calculated from rs as
follows.

rs = 20 log

(
1

δ2

)
1

δ2
= 10rs/20

δ2 =
1

1050/20
= 0.0032

The following MATLAB code is used to design the filter.

[N,F,a,W] = firpmord([0.2 0.3], [1 0], [0.023 0.0032], 1)

N = 20

h = firpm(N,F,a,W);

[H,w] = freqz(h, 1);

The estimated order from firpmord is 19, but the resulting filter with
this order does not satisfy the specifications (firpmord often
underestimates the filter order). The minimum filter length that satisfies
the specifications is N = 20. The magnitude response of this filter is
shown in Figure 17. The right part of the figure shows a closer view of
the magnitude response in the passband. The phase response is shown
in Figure 18. From this figure we can see that the phase is linear.
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Figure 17: Magnitude response of filter designed with firpm
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Figure 18: Phase response of filter designed with firpm

(c) The following MATLAB code generates an elliptic IIR filter.

fp=0.2;

fs=0.3;

rp=0.4;

rs=50;

[N,fc]=ellipord(2*fp,2*fs,rp,rs)

[b,a]=ellip(N,rp,rs,fc);

[H,w]=freqz(b,a);

The ellipord function estimates that a filter order of N = 5 is sufficient,
and from the plots of the magnitude response, shown in Figure 19, we
can verify that the specifications have been met. The right part of the
figure shows a closer view of the magnitude response in the passband.
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Figure 19: Magnitude response of elliptic IIR filter

(d) The windowing method has the advantage that it is very simple.
However, it is also the method that results in the filter of highest order.
The optimal equiripple design method is more complicated, but it
produces a linear phase FIR filter with lowest possible order that meets
the given specifications. This is achieved by controlling the size of the
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Figure 20: Phase response of elliptic IIR filter

errors in the passband and stopband at the same time. Both windowing
method and the equiripple method produce filters with linear phase
response.

The elliptic IIR filter has significantly lower filter order than both the
above methods. Thus, compared to the FIR filters, this filter is less
computationally demanding to implement, requires less memory, and
allows lower delay. The disadvantage of this filter is that we cannot
obtain linear phase response.
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