Norwegian University of Science and Technology
Department of Electronics and Telecommunications

TTT4120 Digital Signal Processing Suggested Solutions for Problem Set 8

Problem 1 (3 points)

(a) The filter $H(z)$ is a first order all-pole filter. The output of the filter is therefore an $A R[1]$ process.
(b) The first order predictor is defined as

$$
\hat{x}(n)=-a_{1} x(n-1)
$$

The prediction coefficient $-a_{1}$ can be found by minimizing the prediction error power $\sigma_{f}^{2}=E\left[f^{2}(n)\right]$, where $f(n)=x(n)-\hat{x}(n)$ is the prediction error. We have that

$$
\sigma_{f}^{2}=E\left[(x(n)-\hat{x}(n))^{2}\right]=E\left[\left(x(n)+a_{1} x(n-1)\right)^{2}\right]
$$

The optimal value for a_{1} can be found by minimizing the prediction error power, i.e.

$$
\frac{\partial \sigma_{f}^{2}}{\partial a_{1}}=0
$$

Thus, we get

$$
\begin{aligned}
& E\left[2\left(x(n)+a_{1} x(n-1)\right) x(n-1)\right]=0 \\
& \gamma_{x x}(1)+a_{1} \gamma_{x x}(0)=0 \Rightarrow a_{1}=-\frac{\gamma_{x x}(1)}{\gamma_{x x}(0)}
\end{aligned}
$$

In the previous problem set the autocorrelation function of the signal $x(n)$ was found to be

$$
\gamma_{x x}(m)=\left(-\frac{1}{2}\right)^{|m|}
$$

Thus, we get

$$
a_{1}=\frac{1}{2} .
$$

By repeating the procedure for the second order predictor, we get

$$
a_{1}=\frac{1}{2} \quad \text { and } \quad a_{2}=0 .
$$

This means thet we can not obtain further reduction of the prediction error by using a higher order peredictor.

The above results could be expected, since $x(n)$ is an $\operatorname{AR}[1]$ process. The optimal predictor is thus the first order predictor with prediction coefficient equal to the filter coefficient.

Problem 2

(a) This is a MA(1)-process, as only the current and the former value of the input signal are used in forming the output signal.
(b) We have

$$
\begin{aligned}
x(n) x(n-l) & =(w(n)-0.4 w(n-1))(w(n-l)-0.4 w(n-l-1)) \\
& =w(n) w(n-l)-0.4 w(n) w(n-l-1)-0.4 w(n-1) w(n-l) \\
& +0.16 w(n-1) w(n-l-1) .
\end{aligned}
$$

Taking the expectation of this leads to

$$
\begin{aligned}
\gamma_{x x}(l) & =\gamma_{w w}(l)-0.4 \gamma_{w w}(l+1)-0.4 \gamma_{w w}(l-1)+0.16 \gamma_{w w}(l) \\
& =1.16 \gamma_{w w}(l)-0.4\left(\gamma_{w w}(l+1)+\gamma_{w w}(l-1)\right) \\
& =1.16 \sigma_{w}^{2} \delta(l)-0.4 \sigma_{w}^{2}(\delta(l+1)+\delta(l-1)) \\
& = \begin{cases}1.16 & l=0 \\
-0.4 & l= \pm 1 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

The expression for the power density spectrum $\Gamma_{x x}(f)$ can be found as follows.

$$
\begin{aligned}
\Gamma_{x x}(f) & =\sum_{l=-1}^{1} \gamma_{x x}(l) e^{-j \omega l} \\
& =-0.4 e^{j \omega}+1.16-0.4 e^{-j \omega} \\
& =1.16-0.8 \cos (2 \pi f)
\end{aligned}
$$

(c) The optimal predictor of order p is given by:

$$
\hat{x}(n)=-\sum_{k=1}^{p} a_{k} x(n-k)
$$

To obtain simple matrix equations that we can solve using Matlab, we use the version of the Yule-Walker that does not contain σ_{f}^{2}, i.e.

$$
\gamma_{x x}(0) a_{1}=-\gamma_{x x}(-1)
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
\gamma_{x x}(0) & \gamma_{x x}(1) \\
\gamma_{x x}(-1) & \gamma_{x x}(0)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
-\gamma_{x x}(-1) \\
-\gamma_{x x}(-2)
\end{array}\right]} \\
{\left[\begin{array}{ccc}
\gamma_{x x}(0) & \gamma_{x x}(1) & \gamma_{x x}(2) \\
\gamma_{x x}(-1) & \gamma_{x x}(0) & \gamma_{x x}(1) \\
\gamma_{x x}(-2) & \gamma_{x x}(-1) & \gamma_{x x}(0)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
-\gamma_{x x}(-1) \\
-\gamma_{x x}(-2) \\
-\gamma_{x x}(-3)
\end{array}\right]}
\end{gathered}
$$

for order one, two, and three respectively. Then we calculate σ_{f}^{2} as

$$
\sigma_{f}^{2}=\sum_{k=0}^{p} a_{k} \gamma_{x x}(k) .
$$

The following Matlab code can be used to find the coefficients, and σ_{f}^{2} for each AR order.

```
gamma_xx = [1.16 -. 4 0 0];
R1 = [1.16];
R2 = [1.16 -.4; -. 4 1.16];
R3 = [1.16 -. 4 0 ; -. 4 1.16 -.4 ; 0 -.4 1.16];
a_1 = R1^(-1)*-gamma_xx(2)'
sigma_f1 = sum([1 a_1'].*gamma_xx(1:2))
a_2 = R2^(-1)*-gamma_xx(2:3)'
sigma_f2 = sum([1 a_2'].*gamma_xx(1:3))
a_3 = R3^(-1)*-gamma_xx(2:4)'
sigma_f3 = sum([1 a_3'].*gamma_xx(1:4))
```

Approximated values are given in the table below.

AR order p	Coefficients	σ_{f}^{2}
1	$a_{1}=0.35$	1.022
2	$a_{1}=0.39, a_{2}=0.14$	1.003
3	$a_{1}=0.39, a_{2}=0.16, a_{3}=0.05$	1.000

We can see that the mean square error decreases as we increase the model order. This means that the AR model is a better approximation of the MA[1] process.
(d) The power density spectrum estimate obtained by using an $\operatorname{AR}[p]$ model
is given by

$$
\begin{aligned}
\hat{\Gamma}_{f f}(f) & =\Gamma_{f f}(f)|H(f)|^{2} \\
& =\sigma_{f}^{2}\left|\frac{1}{A(f)}\right|^{2} \\
& =\frac{\sigma_{f}^{2}}{\left|1+\sum_{k=1}^{p} a_{k} e^{-j 2 \pi f k}\right|^{2}}
\end{aligned}
$$

Figure 1 shows the power density spectrum estimates based on AR models of different order compared to the power density spectrum of the MA[1] process. It can be seen that the estimates become closer to the correct value as the model order increases. Thus, the AR[3] model is the best approximation of these three.

Figure 1: Power density spectrum estimates

Problem 3

- Firstly, the vowel sample files are loaded with wavread.
- Then each vowel is modelled as an AR[10] process. The AR coefficients can be found with $l p c$.
- To transform a vowel v_{i} into another vowel v_{j} we need the prediction error signal from v_{i}. For that use filter and the AR coefficients of that vowel. This is the first part of Figure 2:

Figure 2: Vowel transformation system

- Generate the new vowel v_{j} by filtering the prediction error using the inverse prediction-error filter (with the coefficients that you found for $\left.v_{j}\right)$. This is the second part of Figure 2.
- The output signal can be played using sound.

