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Problem 1

(a) The signal x(n) is given by

x(n) =

{
0.9n n = 0, . . . , Nx − 1,

0 otherwise.

The DTFT of x(n) can be written as

X(ω) =

Nx−1∑
n=0

0.9ne−jωn =

Nx−1∑
n=0

(0.9e−jω)n =
1− (0.9e−jω)Nx

1− 0.9e−jω
,

where we have used the expression for the sum of a geometric series.

Since ω = 2πf , we obtain X(f) as

X(f) =
1− (0.9e−j2πf )Nx

1− 0.9e−j2πf
.

This function can be plotted in MATLAB by the following commands.
The resulting plot is shown in Figure 1.

Nx = 28;

f = 0:1/10000:1;

Xf = (1-(0.9*exp(-j*2*pi*f)).^Nx)./(1-0.9*exp(-j*2*pi*f));

plot(f,abs(Xf)); xlabel(’f’); ylabel(’|X(f)|’)

(b) The following lines will generate the signal x(n) and compute its DFTs.

n = 0:(Nx-1);

x = 0.9.^n;

N1 = Nx/4; N2 = Nx/2; N3 = Nx; N4 = 2*Nx;

Xf1 = fft(x,N1); Xf2 = fft(x,N2);

Xf3 = fft(x,N3); Xf4 = fft(x,N4);
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Figure 1: Magnitude of X(f)

(c) The relationship between f and k is given by

f =
k

N
, k = 0, · · · , N − 1

where N is the length of the DFT.

(d) MATLAB code for plotting the magnitude of one DFT together with
the DTFT is as follows.

plot(f,abs(Xf)); hold on; stem(f1,abs(Xf1))

xlabel(’f’); ylabel(’|X(f)|’); title(’DFT length = Nx/4’)

This results in the plot shown in Figure 2. We see that if the
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DFT length = Nx/2
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Figure 2: Magnitudes of DTFT and DFT for different DFT lengths

DFT-length is less than Nx, the DFT-values will not represent exact the
samples of the DTFT.
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(e) It follows fro the symmetry and periodicity properties of the DTFT and
DFT that if their values are known for f ∈ [0, 0.5], they would be known
for all velues of f .
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Problem 2

(a) The following Matlab commands compute and plot the output signal
y(n). The resulting plot is shown in Figure 3.

Nx = 28;

n = 0:(Nx-1);

x = 0.9.^n;

Nh = 9;

h = ones(1,Nh);

y = conv(x,h);

n=0:length(y)-1;

figure(1); stem(n,y)

xlabel(’n’); ylabel(’y(n)’)
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Figure 3: Filter output y(n)

The length of the output signal y(n) is given by Ny = Nx +Nh − 1 = 36.
This can be verified from the plot.

(b) y(n) can be found in Matlab by the algorithm given below.

N = (Nx+Nh-1)/2;

X = fft(x,N);

H = fft(h,N);

Y = X.*H;

y = ifft(Y,N);

n = 0:N-1;

stem(n,y)

xlabel(’n’); ylabel(’y(n)’)

The resulting signal y(n) for the three different choices of DFT/IDFT
lengths are shown in Figure 4.
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Figure 4: Output signal computed using DFT/IDFT of different lengths

We know from theory that the length of the DFT must be at least equal
to Ny to avoid time domain aliasing. This is verified by the plots.

Note also that the output signal computed using DFT length
N = Ny/2 = 18 is a given as one period of a periodic extension of y(n)
with period Ny/2 = 18. This is easily verified if the signal is plotted in
the same plot as the original y(n) (use different colours).
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Problem 3

(a) Figure 5 shows the magnitude spectrum of the sampled signal on the
interval f ∈ [0, 0.5].

Figure 5: Magnitude spectrum of the sampled signal

(b) MATLAB code for computing a spectral estimate from a finite signal
segment is shown below.

f1 = 7/40; f2 = 9/40; N = 1024;

%generates 100 samples of the sampled signal

t = 0:99; x = sin(2*pi*f1*t) + sin(2*pi*f2*t); X = fft(x,N);

f =0:1/N:1-1/N; figure(1)

plot(f(1:length(f)/2),abs(X(1:length(f)/2)))

xlabel(’f’);ylabel(’|X(f)|’)

title(’segment length 100 samples’); grid

Spectral magnitudes estimated using the different segment lengths are
shown in Figures 6.

We observe that shorter segments result in less accurate spectral
estimates. The effect of spectral leakage is evident, as the frequency
content is no longer limited to only two spectral components. The
spectral resolution becomes poorer as the segment length decreases, and
for the segment length of 10 samples, it is no longer possible to
distinguish the two original frequency components.

(c) Spectral magnitudes estimated using segment lengths 100 and different
DFT lengths are shown in Figures 7.

Denoting the true spectrum as H(ω), the length L of the signal segment
will determine the accuracy of the spectral estimate Ĥ(ω), while the
transform length N will determine spacing between the samples of Ĥ(ω).
(The DFT must be longer then the segment length to avoid aliasing).
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Figure 6: Estimates of the magnitude spectrum for different segment lengths
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Figure 7: Estimates of the magnitude spectrum for different DFT lengths

7



Problem 4

(a) Fast Fourier Transform (FFT) is the name of some efficient
computational algorithms for computing the DFT.

(b) Radix-2 FFT algorithm is an efficient algorithm for DFT computation
which can be applied when N = 2ν , where ν is an integer (zero padding
might have to be used to extend the number of data points to N).

The idea of the algorithm is to devide the sequence x(n) into two
sequences f1(n) and f2(n) of length

N
2 , compute their DFTs and

combine them to obtain X(k).

It can be shown that the number of operations needed to compute X(k)
in this way is approximately two times smaller then in the case of direct
computation of X(k) for large N . This is due to the periodicity and
symmetry properties of W kn

N .

This fact is used iteratively for computation of DFTs of f1(n) and f2(n),
so that the direct DFT computation has to be applied only to
subsequencies of length 2.

(c) From the formula for DFT we can observe that for each value of k,
direct computation of X(k) needs N complex multiplications and N-1
complex additions. To compute all N values of the DFT then requires
N2 complex multiplications and N2 −N complex additions.

(d)

X(k) =
N−1∑
n=0

x(n)W kn
N , k = 0, 1, ..., N − 1

=
∑

n even

x(n)W kn
N +

∑
n odd

x(n)W kn
N

=

(N/2)−1∑
m=0

x(2m)W 2mk
N +

(N/2)−1∑
m=0

x(2m+ 1)W
k(2m+1)
N

Substitute W 2
N = WN/2. We can then write:

X(k) =

(N/2)−1∑
m=0

f1(m)Wmk
N/2 +W k

N

(N/2)−1∑
m=0

f2(m)W km
N/2

= F1(k) +W k
NF2(k), k = 0, 1, ..., N − 1

F1(k) and F2(k) are both periodic with period N/2. That is, we have
F1(k +N/2) = F1(k) and F2(k +N/2) = F2(k). We also have

W
k+N/2
N = −W k

N . We can the write:

X(k) = F1(k) +W k
NF2(k), k = 0, 1, ..., N/2− 1

X(k +N/2) = F1(k)−W k
NF2(k), k = 0, 1, ..., N/2− 1
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(e) The direct computations of F1(k) and F2(k) both requires (N/2)2

complex multiplications. The are also N/2 complex multiplications in
computing W k

NF2(k). The number of complex multiplications required
to compute X(k) is 2(N/2)2 +N/2 = N2/2 +N/2.

Comparing with the results in (c) we can see that for large N the
reduction in number of multiplications are about a factor of 2.
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