
Norwegian University of Science and Technology
Department of Electronics and Telecommunications

TTT4120 Digital Signal Processing
Suggested solution problem Set 4

Problem 1

(a) The pole-zero plots are shown in the figure below.
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pole−zero plot with a=−0.9
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pole−zero plot with a=0.9

The frequency response is the z-transform evaluated along the unit
circle. The magnitude of the response will be high at frequencies close to
the pole, and lower at frequencies further away from the pole. We can
then see from the plot that when a = 0.9 the filter is a lowpass filter,
and when a = −0.9 the filter is a highpass filter.

(b) Note that pezdemo is only valid for causal filters.

Problem 2

(a) The inverse filter is given by

HI(z) = H−1(z) =

(
1− 1

2
z−1

)(
1 +

1

2
z−1

)
= 1− 1

4
z−2.

(b) Since this filter is an FIR filter, it is stable.
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(c) Since filter HI(z) has zeros at z1 = 1/2 and z2 = −1/2, which is inside
the unit circle, the filter is a minimum phase filter.

(d) For a filter with a zero at z to be linear phase, the filter must also have a
zero at 1/z. The filter HI(z) has zeros at z1 = 1/2 and z2 = −1/2, but
not at 2 or -2. Thus, the filter is not linear phase.

Problem 3

(a) A(z) is allpass because it has pole and zero respectivly in α and α−1.

(b) By examining the block diagram we see that, for the upper branch,

Yub(z) =
1

2
[1 +A(z)]X(z)

Hub(z) =
Yub(z)

X(z)
=

1

2
[1 +A(z)] =

1

2
[1 +

α− z−1

1− αz−1
]

=
1

2
[
1− αz−1 + α− z−1

1− αz−1
] =

(1 + α)− (1 + α)z−1

2− 2αz−1

=
1.9− 1.9z−1

2− 1.8z−1
.

For the lower branch

Ylb(z) =
K

2
[1−A(z)]X(z)

Hlb(z) =
Ylb(z)

X(z)
=

K

2
[1−A(z)] =

K

2
[1− α− z−1

1− αz−1
]

=
K

2
[
1− αz−1 − α+ z−1

1− αz−1
] =

K(1− α) +K(1− α)z−1

2− 2αz−1

=
0.1 + 0.1z−1

2− 1.8z−1
.

Thus, the magnitude response can be calculated and plotted with

b_ub = [1.9,-1.9]; a = [2,-1.8]; b_lb = [0.1,0.1]; [h_ub,w] =

freqz(b_ub,a); [h_lb,w] = freqz(b_lb,a); subplot(2,1,1)

plot(w,abs(h_ub)) axis([0,pi,0,1.5]) xlabel(’Angular frequency’)

ylabel(’Magnitude response’) title(’Magnitude response for the upper

branch’) subplot(2,1,2) plot(w,abs(h_lb)); axis([0,pi,0,1.5])

xlabel(’Angular frequency’) ylabel(’Magnitude response’)

title(’Magnitude response for the lower branch’)

This gives the plot shown in Figure 1. We can see that the upper branch
represents a highpass filter, while the lower branch represents a lowpass
filter.
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Magnitude response for the upper branch
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Magnitude response for the lower branch

Figure 1: Magnitude responses for the upper and lower branch
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α =0.5
α =0.7
α =0.9

Figure 2: Magnitude response for entire filter with K = 3
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Magnitude response for entire filter, with alpha=0.7
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Figure 3: Magnitude response for entire filter with α = 0.7
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(c) Figure 2 is a plot of the magnitude response with K fixed at 3 and
different αs, while Figure 3 is a plot of the magnitude response with α
fixed at 0.7 and different Ks.

K is the gain of the lower branch (the lowpass filter). By adjusting K
we regulate the contribution from the lowpass filter relative to the
contribution from the highpass filter. Thus, K controls the boost or cut
at low frequencies. As we can see from Figure 2, the parameter α
controls the boost or cut bandwidth.

Problem 4

(a) Plot of the amplitude spectra for G(f) and D(f) are given below and
shown in figure 4-5
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Figure 4: d(n) and |D(f)|

(b) Transfer functions of the digital resonators are given by

Hx(z) =
(1− z−1)(1 + z−1)

(1− 0.99ej2πfxz−1)(1− 0.99e−j2πfxz−1)

Hy(z) =
(1− z−1)(1 + z−1)

(1− 0.99ej2πfyz−1)(1− 0.99e−j2πfyz−1)
.

The following MATLAB code generates plots of zeros and poles, and
amplitude responses of the resonators. These plots are shown in Figures
6-9. From |Hx(f)| and |Hy(f)| in Figures 8 and 9, we can see peaks at
fx and fy respectively. This means that the resonators will remove all
frequency components from a signal except components close to fx and
fy.

px=[0.99*exp(j*2*pi*fx) 0.99*exp(-j*2*pi*fx)]’;

py=[0.99*exp(j*2*pi*fy) 0.99*exp(-j*2*pi*fy)]’; z=[-1 1]’;
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Figure 5: g(n) and |G(f)|

zplane(z,px) zplane(z,py)

[Hx,w]=freqz(poly(z),poly(px)); [Hy,w]=freqz(poly(z),poly(py));

f=w/2/pi; plot(f,abs(Hx)); plot(f,abs(Hy));
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Figure 6: Zeros and poles for Hx(z)

(c) The MATLAB code for filtering the noise contaminated signal with
Hx(z) and Hy(z) are given below. Plots of the output from the filter as
well as their amplitude spectra can be found in figure 10 - 11

In Figures 10 and 11, we see the output signals after filtering with Hx(z)
and Hy(z) respectively. From qx(n) we can see that the frequency
component fx has been preserved, while fy and most of the noise have
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Figure 7: Zeros and poles for Hy(z)
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Figure 8: |Hx(f)|
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Figure 9: |Hy(f)|
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Figure 10: Output signal qx(n) and |Qx(f)|
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Figure 11: Output signal qy(n) and |Qy(f)|
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been removed. In the signal qy(n), only fy has been preserved. The
same observations can be made from the corresponding spectra.

(d) Since we want to isolate the two sinusoids with the resulting filter we
need to combine then in parallel. The expression for H(z) can then be
written as

H(z) = Hx(z) +Hy(z)

The following MATLAB code will plot the magnitude response of the
resulting system.

H=Hx+Hy; plot(f,abs(H));

From |H(f)| in Figure 12 we can see that there are peaks at both fx and
fy. In addition, the response is zero between the peaks.

To find the poles and zeros we can write the expression for H(z) as

H(z) = Hx(z) +Hy(z)

=
(1− z−1)(1 + z−1)

(1− pxz−1)(1− p∗xz
−1)

+
(1− z−1)(1 + z−1)

(1− pyz−1)(1− p∗yz
−1)

=
(1− z−1)(1 + z−1)

(
(1− pxz

−1)(1− p∗xz
−1) + (1− pyz

−1)(1− p∗yz
−1)

)
(1− pxz−1)(1− p∗xz

−1)(1− pyz−1)(1− p∗yz
−1)

We can see from this equation that the filter will have all the poles and
zeros from Hx and Hy. In addition to two new zeros from the second
degree polynomial, which can be found by using the MATLAB functions
poly and roots. The MATLAB code for this is given below.

z(3:4)=roots(poly(px)+poly(py)); p=[px;py]; zplane(z,p)

We can se from the plot in figure 13 that all of the poles and zeros from
both Hx(z) and Hy(z), in addition to two new zeros between the poles.
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Figure 12: |H(f)|
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Figure 13: Zeros and poles for H(z)
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MATLAB code for filtering the noise contaminated signal with H(z) is
given below, and resulting plot is shown in figure 14. We can see the
result after filtering with H(z). Although q(n) is a somewhat distorted
version of d(n), we can observe similarity. The spectrum |Q(f)| shows
that most of the noise has been removed.

q=filter(poly(z),poly(p),g); Qf=fft(q,N);

plot(n,q) f=0:1/N:1-1/N; plot(f,abs(Qf))
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Figure 14: Output signal q(n) and |Q(f)|
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