
Norwegian University of Science and Technology
Department of Electronics and Telecommunications

TTT4120 Digital Signal Processing
Suggested Solutions for Problem Set 1

Problem 1

(a) The signals x(n) and y(n) are shown in Figure 1.

Figure 1: The signals x(n) and y(n).

(b) When k is positive, the signal will be shifted to the right, and for
negative k, the signal will be shifted left. Thus, we get the sketches
shown in Figure 2.

(c) The signal x(−n) will be x(n) flipped about n = 0. The resulting sketch
is shown in Figure 3.

(d) The signal x(5− n) will be a flipped version of x(n) shifted to the right.
The sketch is shown in Figure 4.
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Figure 2: Shifted signals, x(n− 3) and x(n+ 3).

Figure 3: Flipped signal, x(−n).

(e) The signal y(n) is a window signal. When multiplying x(n) by y(n), the
two first samples of x(n) will be removed. Thus, we get

z(n) =

{
5− n 2 ≤ n ≤ 4

0 otherwise.

The sketch of the resulting signal z(n) is shown in Figure 5.

(f) The signal x(n) can be expressed as follows.

x(n) = 5δ(n) + 4δ(n− 1) + 3δ(n− 2) + 2δ(n− 3) + δ(n− 4)
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Figure 4: Flipped and shifted signal, x(5− n).

Figure 5: Signal x(n)y(n).

(g) y(n) can be expressed as the difference between two unit step signals as
shown in Figure 6. Thus, we get

y(n) = u(n− 2)− u(n− 5).

Figure 6: Signals, u(n− 2) and u(n− 5).

(h) The energy of x(n) can be found as:

E =

∞∑
n=−∞

|x(n)|2 = 25 + 16 + 9 + 4 + 1 = 55.
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Problem 2

(a) The normalized frequency is used to represent discrete time signals in
the frequency domain. Discrete time signals have a periodic structure in
the frequency domain. The period is [−.5, 0.5) (or [0, 1)). Using the first
alternative we must have that f1 ∈ [−0.5, 0.5) which corresponds to
F1 = Fs ∗ f1 ∈ [−3000, 3000) Hz for Fs = 6000 Hz.

(b) A sampled sinusoidal signal of length N can be generated in Matlab as:

t=0:1/F_s:N-1
signal=sin(2*pi*f_1*t);

The resulting signal can be played with Matlab as:

soundsc(signal,Fs)

(c) For Fs = 1000/3000/12000 Hz the normalized frequency f1 = 0.3
corresponds to F1 = f1 ∗ Fs = 300/900/3600 Hz. Thus we will hear a
higher tone when we increase the sampling rate. Thus a constant
normalized frequency can correspond to any physical frequency
depending on the chosen sampling rate. Especially for filter design we
will see that this is an advantage.

(d) Now we use the formula f1 = F1/Fs. Thus for a sampling rate of
F2 = 8000 Hz the physical frequencies F1 = 1000/3000/6000 Hz
correspond to f1 = F1/Fs = 0.125/0.375/0.75. Logically one should
expect a higher tone as the physical frequency F1 increases. However,
for F1 > F2/2 = 4000 Hz we violate the Nyquist sampling theorem. This
applies for F1 = 6000 Hz, i.e. f1 = 0.75 > 0.5. Due to the periodicity of
one this frequency will be converted to 1− f1 = 0.25 which corresponds
to that we hear the physical frequency F1 = 0.25 ∗ 8000 = 2000 Hz.

Problem 3

(a) Since this system involves the quadratic term x2(n− 1), it is not linear.
However, since the difference equation has constant coefficients
(independent of n), the system is time-invariant. It is also causal, since
y(n) only depends on present and past samples of x(n).
To show the time-invariance property from the definition, we excite the
system with a delayed signal x1(n) = x(n− k), and find the output
signal y1(n). If y1(n) = y(n− k), the system is time-invariant.

y1(n) = x1(n− k)− x21(n− k − 1)

= y(n− k)

Thus, we have shown that the system is time-invariant.
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Now, to show that it is not linear from the definition, we excite the
system with two different signals x1(n) and x2(n). We call the output
signals y1(n) and y2(n) respectively.

y1(n) = x1(n)− x1(n− 1)2

y2(n) = x2(n)− x2(n− 1)2

Then, we excite the system with another signal,
x3(n) = a1x1(n) + a2x2(n). If the system is linear then the
corresponding output signal should be y3(n) = a1y1(n) + a2y2(n).

y3(n) = x3(n)− x23(n− 1)

= a1x1(n) + a2x2(n)− (a1x1(n− 1) + a2x2(n− 1))2

= a1x1(n) + a2x2(n)

− ((a1x1(n− 1))2 + 2a1a2x1(n− 1)x2(n− 1) + (a2x2(n− 1))2)

= a1y1(n) + a2y2(n)− 2a1a2x1(n)x2(n− 1)

̸= a1y1(n) + a2y2(n)

Thus, we have shown that the system is not linear.

(b) Since y(n) is now a linear combination of samples from x(n), this system
is linear. However, since one of the coefficients is dependent on n, the
system is not time-invariant. Finally, since y(n) only depends on present
and past samples of x(n), the system is causal.
We now check time-invariance and linearity by the definitions. First
time-invariance. Let x1(n) = x(n− k). Then

y1(n) = nx1(n) + 2x1(n− 2)

= (n− k)x(n− k) + 2x(n− k − 2)

̸= y(n− k)

Now, we check linearity. Let x3(n) = a1x1(n) + a2x2(n)

y1(n) = nx1(n) + 2x1(n− 2)

y2(n) = nx2(n) + 2x2(n− 2)

y3(n) = nx3(n) + 2x3(n− 2)

y3(n) = a1(nx1(n) + 2x1(n− 2)) + a2(nx2(n) + x2(n− 2))

= a1y1(n) + a2y2(n)

Thus, the system is linear.

(c) In this system y(n) is a simple linear combination of present and past
samples of x(n) with constant coefficients. Thus, this system is
time-invariant, linear, and causal.
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Again, we can check this by the definitions.

y1(n) = x1(n)− x1(n− 1)

= x(n− k)− x(n− k − 1)

= y(n− k)

Thus, we have shown time-invariance. Then we show that the system is
linear.

y1(n) = x1(n)− x1(n− 1)

y2(n) = x2(n)− x2(n− 1)

y3(n) = x3(n)− x3(n− 1)

= a1x1(n) + a2x2(n)− a1x1(n− 1)− a2x2(n− 1)

= a1y1(n) + a2y2(n)

(d) This system is both linear and time-invariant for the same reasons as
the system in (c). However, in this system y(n) depends on a future
sample of x(n). Thus, the system is not causal.

Problem 4

(a) The unit sample response is obtained at the output of the system when
the system is excited by a unit sample δ(n). Thus, if we replace the
signal x(n) in the difference equation by the δ signal, we can replace the
output signal y(n) by the unit sample response h(n). For the first
system, we get

h(n) = δ(n) + 2δ(n− 1) + δ(n− 2)

=


1 n = 0

2 n = 1

1 n = 2

0 otherwise.

For the second system we have

h(n) = −0.8h(n− 1) + δ(n)

In this case we have a recursive equation. An iterative method can be
used to find the unit sample response. Note that h(n) = 0 for n < 0
since the system is causal. So we only have to find h(n) for n ≥ 0. We
start by determining h(0).

h(0) = 0.8h(−1) + 1 = −0.8 · 0 + 1 = 1

Now, for n ̸= 0, we have

h(n) = −0.8h(n− 1).

6



Now, we do some iterations.

h(1) = −0.8h(0) = −0.8

h(2) = −0.8h(1) = (−0.8)2

h(3) = −0.8h(2) = (−0.8)3

...
h(n) = (−0.8)n for n ≥ 0

= (−0.8)nu(n)

(b) As we saw in (a), the first system has a finite length unit sample
response, while the unit sample response of the other system was of
infinite length. Thus, the two systems are FIR and IIR, respectively.

(c) To check whether the systems are stable, we need to check whether
∞∑

n=−∞
|h(n)| < ∞.

For the first system, we get
∞∑

n=−∞
|h(n)| = 1 + 2 + 1 = 4

so this system is stable. Note that all FIR systems are stable. For the
second system we get

∞∑
n=−∞

|h(n)| =
∞∑
n=0

|(−0.8)n|

=
∞∑
n=0

0.8n

=
1

1− 0.8

= 5

so this system is also stable.

(d) The filters are represented in Figure 7 and Figure 8.

Problem 5

(a) The signal y1(n) can be computed as follows
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Z-1

Z-1
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x[n] y[n]

x[n-1]

x[n-2]

Figure 7: Filter structure of the first system

Z-1

-0.8

x[n] y[n]

Figure 8: Filter structure of the second system

y1(n) = x(n) ∗ h(n) = x(n) ∗ [δ(n) + δ(n− 1) + δ(n− 2)]

= x(n) ∗ δ(n) + x(n) ∗ δ(n− 1) + x(n) ∗ δ(n− 2)]

= x(n) + x(n− 1) + x(n− 2)

To get the final result we can use a graphical computation method,
which is displayed in Figure 9.

(b) The second ouput is shown in Figure 10 and it can be computed with
Matlab as follows:

y_1 = [1 3 6 5 3];
n = 0:10;
h_2 = (0.9).^n;
y_2 = conv(h_2, y_1);
n = 0:length(y_2)-1;
stem(n, y_2);
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Figure 9: Computation of y1(n)
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Figure 10: Output signal after filtering by both h1(n) and h2(n)

(c) The length of an output signal y(n) is Lx +Lh − 1, where Lx and Lh are
the length of the input signal and the unit sample response of the filter.
In our problem, y1(n) has length 3 + 3− 1 = 5 and y2(n) has length
5 + 11− 1 = 15.

(d) Since the convolution operation is commutative, it does not matter
which filter comes first. Thus, the plot of the output signal after the
second filter, h1(n) in this case, is exactly equal to the one in Figure 10.
However, the output of the first filter, h2(n) in this case, is different
than before and it is shown in Figure 11.
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Figure 11: Output signal after filtering by h2(n)

10


