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Problem 1

For l ≥ 0, using the fact that the signal s(n) is not correlated with future
samples of the noise v(n), a recursive expression for the autocorrelation
function can be found as

γss(l) = E [s(n)s(n+ l)]

= E [(0.8s(n− 1) + v(n))(0.8s(n− 1 + l) + v(n+ l))]

= 0.64E [s(n− 1)s(n− 1 + l)] + 0.8E [s(n− 1)v(n+ l)]

+ 0.8E [s(n+ l − 1)v(n)] + E [v(n)v(n+ l)]

= 0.64γss(l) + 0 + E [0.8s(n+ l − 1)(s(n)− 0.8s(n− 1))] + γvv(l)

= 0.64γss(l) + 0.8γss(l − 1)− 0.64γss(l) + γvv(l)

= 0.8γss(l − 1) + σ2
vδ(l)

= 0.8γss(l − 1) + 0.09δ(l)

Using this recursive expression and the symmetry of the autocorrelation
function:

γss(0) = 0.8γss(−1) + 0.09 = 0.8γss(1) + 0.09

γss(1) = 0.8γss(0)

γss(0) = 0.8 · 0.8γss(0) + 0.09

γss(0) =
9

36
=

1

4
γss(1) = 0.8γss(0)

γss(2) = 0.64γss(0).

If we continue the same line of reasoning, we can show that
γss(l) = γss(0)0.8

|l| = 1
40.8

|l|.

The normal equations for M = 3 are: γxx(0) γxx(−1) γxx(−2)
γxx(−1) γxx(0) γxx(1)
γxx(−2) γxx(−1) γxx(0)

h0h1
h2

 =

γdx(0)γdx(1)
γdx(2)


1



For our case,

γxx(l) = γss(l) + γww(l) =
1

4
0.8|l| + δ(l)

γdx(l) = γss =
1

4
0.8|l|

Thus, we have the equations1.25 0.2 0.16
0.2 1.25 0.2
0.16 0.2 1.25

h0h1
h2

 =

0.250.2
0.16


Solving for h: h0h1

h2

 =

1.25 0.2 0.16
0.2 1.25 0.2
0.16 0.2 1.25

−1 0.250.2
0.16

 =

0.16980.1189
0.0872



We also can assume that s(n) is the output of a system with unit sample
response h(n) and input v(n), then γss(l) can be computed:

H(z) =
1

1− 0.8z−1

h(n) = 0.8n, n = 0, 1, 2, ...

rhh(l) =
∞∑
n=0

0.8n · 0.8n+l, l ≥ 0

rhh(l) = 0.8|l|
1

1− 0.82

=
1

0.36
· 0.8|l|

γss(l) = γvv(l) ∗ rhh(l)

= 0.09 · δ(l) ∗ 1

0.36
· 0.8|l|

=
1

4
0.8|l|

Problem 2

(a) The filter can be decomposed as

H(z) = H1(z)H2(z) =
z−1 − 1

2

(1− 1
2z

−1)(1 + 1
2z

−1)
=

A

1− 1
2z

−1
+

B

1 + 1
2z

−1
,

2



where

A = H(z)(1− 1

2
z−1)

∣∣∣∣
z= 1

2

=
z−1 − 1

2

1 + 1
2z

−1

∣∣∣∣
z= 1

2

=
3

4

and

B = H(z)(1 +
1

2
z−1)

∣∣∣∣
z=− 1

2

=
z−1 − 1

2

1− 1
2z

−1

∣∣∣∣
z=− 1

2

= −5

4

Hence,

H(z) =
3
4

1− 1
2z

−1
+

−5
4

1 + 1
2z

−1
,

(b) In order to sketch the DF2 structure of H(z) it is useful to first find the
difference equation for the filter. We have.

H(z) =
Y (z)

X(z)
=

z−1 − 1
2

(1− 1
2z

−1)(1 + 1
2z

−1)

Y (z)− 1

4
z−2Y (z) = z−1X(z)− 1

2
X(z)

y(n)− 1

4
y(n− 2) = x(n− 1)− 1

2
x(n)

Starting from the difference equation it is easy to draw the direct form 1
(DF1) of the filter. See figure 1.

Figure 1: Direct form 1

From the DF1 we can get the DF2 structure by exchanging the left and
right parts, and then merge the delay components. We then get the DF2
structure shown in figure 2.

Figure 2: Direct form 2

The parallel realization of H(z) can be found from equation 4 in the
problem text. The result is in figure 3.
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Figure 3: Parallel realization

A cascade realization of H(z) can be found from equation 1 in the
problem text. The result is sketched in figure 4.

Figure 4: Cascade realization

Problem 3
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(b)

H(z) =
1

3
· 1− 3z−1

1− 1/3z−1

G(z) =
1

1− 1/3z−1
−→ g(n) =

{
(1/3)n, n ≥ 0

0, n < 0

H(z) =
1

3
G(z)− z−1G(z)

=⇒ h(n) =
1

3
g(n)u(n)− g(n− 1)u(n− 1)

h(0) =
1

3
g(0) =

1

3

h(n) =


1
3(1/3)

n − (1/3)n−1, n > 1

1/3, n = 0

0, n < 0

where 1
3(

1
3)

n − (13)
n−1 = [(13)

2 − 1](13)
n−1 = −8

9(
1
3)

n−1.

-

6

−∆
2

∆
2

p(e)

e

(c)

σ2
e =

∫ ∆
2

−∆
2

e2p(e)de =
1

∆

∫ ∆
2

−∆
2

e2de and ∆ = 2−B

σ2
e =

1

∆

[
1

3
e3
]∆

2

−∆
2

=
1

3∆

[
∆3

8
−
(
−∆3

8

)]
=

∆2

12
=

2−2B

12

(d)

⊕ ⊕

⊕

⊕

⊕

z−1

- - ? -

-

6
-

?

- -��

6

�

-x(n) 1/3

e1(n)

e2(n) 1/3 −3 e3(n)

y(n) + q(n)

q(n) = h1(n) ∗ e1(n) + h2(n) ∗ e2(n) + h3(n) ∗ e3(n)
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where h1(n) = h2(n) = 3h(n), h3(n) = δ(n) (short-circuiting)

σ2
q = 2σ2

e9rhh(0) + σ2
e

rhh(0) =
∞∑
n=0

h2(n) =

(
1

3

)2

+
∞∑
n=1

h2(n)

=
1

9
+

∞∑
n=1

(
8

9

)2[(1

3

)n−1]2
l = n− 1 −→

rhh(0) =
1

9
+

(
8

9

)2 ∞∑
l=0

(
1

3

)2l

=
1

9
+

(
8

9

)2 1

1− 1/9

=
1

9
+

(
8

9

)2 9

8
=

1

9
+

8

9
= 1

=⇒ σ2
q = 2 · 9 · 1 · σ2

e + σ2
e = 19σ2

e

(e) •

- -⊕
6

-1/3

?
z−1

�−1/3 -−3
6
⊕ -

h1(n) =

{
1
3

(
1
3

)n
, n ≥ 0

0, n < 0

h2(n) = h(n)

where h1(n) and h2(n) are respectively the unit sample response of
the filter by assuming that the output is the signal just after first
and second adder.∑

|h1(n)| =
1

3

∑∣∣∣1
3

∣∣∣n =
1

3
· 1

1− 1
3

=
1

3
· 3
2
=

1

2∑
|h(n)| = 1

3
+

8

9

∞∑
n=1

(
1

3

)n−1

=
1

3
+

8

9

∞∑
l=0

(
1

3

)l

=
1

3
+

8

9
· 3
2
=

5

3
>

1

2

Overflow takes place just at the output of second adder. So we
have to scale the input in order to prevent overflow at this point.
To do so we need scaling factor s = 3

5 at the input.
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-

6

−1 1

p(x)

x

1
2

•

σ2
x = E[x2] =

∫ +∞

−∞
x2p(x)dx =

1

2

∫ 1

−1
x2dx =

1

3

σ2
e = 2−2B/12 = 2−14/12 (B = 7)

the output power without applying scaling factor is:

σ2
y = σ2

xrhh(0) = σ2
x

SNR at the output without scaling factor is:

−→ σ2
x

19σ2
e

≈ 35dB

by applying scaling factor s the SNR at the output becomes:

−→ s2σ2
x

19σ2
e

=
(35)

2

19
· σ

2
x

σ2
e

=
9

25 · 19
· σ

2
x

σ2
e

≈ 31dB
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