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Problem 1

(a) We have that Sxx(ω) = |X(ω)|2. The DTFT of x(n) is found as follows.

X(ω) =
∞∑

n=−∞
x(n)e−jωn

=
∞∑
n=0

ane−jωn

=

∞∑
n=0

(ae−jω)n

=
1

1− ae−jω

Thus, we get

Sxx(ω) = |X(ω)|2 = X(ω)X∗(ω)

=
1

1− ae−jω
· 1

1− aejω

=
1

1− ae−jω − aejω + a2

=
1

1 + a2 − 2a cosω

Sxx(f) = Sxx(ω)|ω=2πf

=
1

1 + a2 − 2a cos(2πf)
.
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(b) Let l ≥ 0. We get

rxx(l) =
∞∑

n=−∞
x(n+ l)x(n)

=
∞∑

n=−∞
an+lu(n+ l)anu(n)

= al
∞∑
n=0

a2n =
al

1− a2
.

Let now l < 0. Using the symmetry of the autocorrelation function and
the fact that −l > 0 we get

rxx(l) = rxx(−l) =
a−l

1− a2
,

It follows that for any value of l we have

rxx(l) =
a|l|

1− a2
,

We can now calculate Sxx(ω) by taking the DTFT of rxx(l)

Sxx(ω) =

∞∑
l=−∞

rxx(l)e
−jωl

=

∞∑
l=−∞

a|l|

1− a2
e−jωl

=
1

1− a2

( −1∑
l=−∞

a−le−jωl +

∞∑
l=0

ale−jωl

)

=
1

1− a2

( ∞∑
l=1

alejωl +
∞∑
l=0

ale−jωl

)

=
1

1− a2

( ∞∑
l=0

al+1ejω(l+1) +
∞∑
l=0

ale−jωl

)

=
1

1− a2

(
aejω

∞∑
l=0

(aejω)l +
∞∑
l=0

(ae−jω)l

)

=
1

1− a2

(
aejω

1− aejω
+

1

1− ae−jω

)
=

1

1− a2
· aejω − a2 + 1− aejω

(1− aejω)(1− ae−jω)

=
1

(1− aejω)(1− ae−jω)

=
1

1 + a2 − 2a cosω
,

which is the same as in 1a.
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(c) Plots of x(n), rxx(l), and Sxx(f) for different values of a are shown in
Figures 1-3.
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Figure 1: x(n), rxx(l), and Sxx(f) when a = 0.4

0

0.2

0.4

0.6

0.8

1

x
(n

)

0 20 40 60
n

0

2

4

6

8

10

r
x

x
(l

)

-50 0 50
l

-0.5 0 0.5
f

0

100

200

300

400
S

x
x
(f

)

Figure 2: x(n), rxx(l), and Sxx(f) when a = 0.95
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Figure 3: x(n), rxx(l), and Sxx(f) when a = −0.95

Let us first compare the plots for a = 0.4 and a = 0.94. We observe that
the signal x(n) varies much faster for a = 0.4. The correlation between
two samples at distance l from each other is thus much smaller in this
case. This can be verified by comparing the autocorrelation functions at
some lag l (e.g. l = 10). Furthermore, since the signal x(n) varies much
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faster for a = 0.4, it means that it contains higher frequency
components. This can be verifyed by comparing the energy spectral
densities. It is easily seen that the energy is more concentrated at low
frequencies for a = 0.95 than for a = 0.4.

Let us now compare the plots for a = 0.95 and a = −0.95. We see that
for a = −0.95 the signal changes very rapidly for adjacent samples
(x(n+ 1) ≈ −x(n)), but the signal values at distance 2 from each other
are rather similar. The same observation can be made by looking at the
autocorrelation functions: the correlation between samples separated by
a lag of 2,4,6,... is as high as for the a = 0.95, while the correlation
between samples at distance 1,3,5,... from each other has a large
negative value (it is large because the absolute value of the samples is
similar, and negative because of the change in sign). The changes in sign
between adjacent samples are quick variations in the signal, which
means that the signal contains high frequency components. This is
verified by looking at the energy spectral density, where it can be seen
that all signal energy is concentrated around high frequencies.

The two properties of the autocorrelation function that can be observed
from the plots are that rxx(l) is an even function (i.e. rxx(−l) = rxx(l)),
and that it attains its maximum at l = 0.

(d) The energy of the signal is simply given by rxx(0)

Ex =

∞∑
n=−∞

x2(n) = rxx(0) =
1

1− a2
.

(e) When a signal is filtered, we have the following relation.

Syy(f) = |H(f)|2Sxx(f)

The frequency response to the first filter is obtained as follows,

H1(f) = DTFT{δ(n)− aδ(n− 1)} = 1− ae−jω

and

|H1(f)|2 = (1− ae−jω)(1− aejω) = 1 + a2 − 2a cos(2πf)

Note that h1(n) is actually the inverse of x(n). If we denote the result of
the first filtering stage as y1(n), then

Sy1y1(f) = |H1(f)|2Sxx(f) = 1

The second filter is lowpass filter with cut-off at f = 1/4. Thus, we get

Syy(f) = |H2(f)|2Sy1y1(f) =

{
cos2(2πf) |f | ≤ 1

4

0 1
4 < |f | ≤ 1

2 .
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Filtering by the lowpass filter removes all frequency components higher
than the cut-off frequency. The entire energy of the output signal is thus
contained in the frequency range |f | ≤ 1

4 . The energy of the output
signal can be found using

Ey =

∫ 1
2

− 1
2

Syy(f)df =

∫ 1
4

− 1
4

cos2(2πf)df =
1

4
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Problem 2

(a) Plots of the signals x(n) and y(n) are shown in Figure 4. Due to the
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Figure 4: The signals x(n) and y(n)

presense of a high noise component in the received signal y(n), it is not
easy to conclude wether y(n) also contains a reflection of the signal x(n).

(b) Matlab code to generate and plot ryx(l) is given below.

r=xcorr(y, x);

L=length(r)-1;

l=-L:L;

stem(l,r);

xlabel(’l’)

ylabel(’r_{yx}(l)’)

Plot of ryx(l) is shown in Figure 5.

(c) The crosscorrelation function is given by

ryx(l) = y(l) ∗ x(−l).

The following Matlab code can be used to calculate the crosscorrelation
function.
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Figure 5: The crosscorrelation function ryx(l)

% reverse the vector x

x_rev = fliplr(x);

r2 = conv(y, x_rev);

It produces the identical result as the one in 2b).

(d) The crosscorrelation function has a distinct peak, which suggests that
the signal y(n) contain a reflected component of the emitted signal x(n).
The crosscorrelation function attains its maximum at l = 150, so this
value is our best estimate for the delay D.

This method is much more reliable than the direct comparison of the
plots of the emitted and the received signals.
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Problem 3

(a) We can find the transfer function as:

Y (z) =X(z) + αz−RX(z)

=X(z)(1 + αz−R)

H(z) =
Y (z)

X(z)
= 1 + αz−R

(b) The relationship between the delay in seconds, Ds, and the delay R is
Ds =

R
Fs

(c) The filter can be implemented as:

A=1; B = zeros(1,(R+1)); B(1)=1; B(end)=alpha;

filter(B,A,sound_file);

An example of the impulse/frequency response is given in figure 6 a) and
b), respectively.
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Figure 6: a) Impulse response and b) Frequency response for single-echo filter with
R = 8 and α = 0.8

(d) A larger R and α gives a more pronounced echo effect.

(e) We find the transfer function as:

Y (z) =E(z)− E(z)z−NRαN

E(z) =X(z) + E(z)z−Rα

E(z)(1− z−Rα) =X(z) → E(z) =
X(z)

1− z−Rα

Y (z) =E(z)(1− αNz−NR)

=X(z)
1− αNz−NR

1− z−Rα

H(z) =
1− αNz−NR

1− z−Rα
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This can be implemented in MATLAB as:

B = zeros(1,N*R+1); B(1)=1; B(N*R+1)=-(alpha^N);

A = zeros(1,R+1); A(1)=1; A(R+1)=-alpha;

filter(B,A,sound_file);

An example of the impulse/frequency response for the multiple echo
filter is given in figure 7 a) and b), respectively.
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Figure 7: a) Impulse response and b) Frequency response for multiple-echo filter with
R = 16, N = 6 and α = 0.8

(f) We can in the multiple filter observe that we have multiple spikes in the
impulse response. Each spike indicates an echo.

(g) After filtering the sound will have multiple echoes. This will give the
sound a more spacious sound when compared to the original sound file,
which only consist of the direct sound.

(h) In a real room the sound will have multiple echoes from all the walls.
Hence the filter with multiple echoes will give the most ”natural” sound.
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