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Problem 1

(a) The samples from the white noises are uncorrelated and drawn from the
corresponding distribution. Since a white noise has zero mean and we
are told that these noises have unit variance, we have all the parameters
for their probability distributions.
For the uniform distribution we have to find the limits (which will be
symmetric because of the zero mean property):
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∫ a

−a
x2dx = 1 → a =

√
3,

Matlab code:

g = randn(1,N);

u = sqrt(3)*(2*rand(1,N) - 1);

b = 2*(rand(1,N)>0.5)-1;

Figure 1 shows the realization of the different white noises. It is common
for all the noises that the samples are uncorrelated for each of them.
This means that given one sample there is no information about the
value of the next one. The binary noise is limited to two different values,
whereas the uniform and the gaussian noise takes values in a given
interval. At first sight it is difficult to make difference between the
gaussian noise and the uniform one. However it can be seen that the
gaussian noise takes some values out of (−

√
3,
√
3). In addition, the

value of the samples from the gaussian noise are concentrated in the
center, where as the value of the samples of the uniform noise are
equally spaced.

(b) White binary noise:

PX(x) =

{
0.5 if x = ±1
0 otherwise
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Figure 1: Realizations of different types of white noises

White uniform noise:

PX(x) =

{
1

2
√
3

if x ∈ (−
√
3,
√
3)

0 otherwise

White gaussian noise:

PX(x) =
1√
2π

e−
x2

2

To compute the mean of X(n) we use the symmetry properties of PX(x):∫
xPX(x)dx = 0

To compute the autocorrelation function we have to use the fact that
the sample are uncorrelated (because they are white signals):

RX [k] = EX[n]X[n− k] = σ2δ(k)

The power density spectrum in the DTFT of the autocorrelation
function:

SX(w) = DTFT {RX [k]} = σ2
X

(c) The mean estimates should be quite accurate (less than 0.001Figure 2
shows that the estimated correlations are very accurate. They were
found using the function xcorr so that we get a normalized estimate.

Problem 2

The mean value of the input w(n) is zero, because it is a white noise process.
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Figure 2: Estimates of the autocorrelation function

The autocorrelation function of the input, w(n), is given by

γww(m) = E[w(n)w(n+m)] = σ2
wδ(m) =

3

4
δ(m),

since the samples of white noise are uncorrelated. The power density
spectrum of the input is given by

Γww(f) = DTFT{γww(m)} =
∞∑

m=−∞
γww(m)e−j2πfm

=
∞∑

m=−∞
σ2
w δ(m)e−j2πfm = σ2

w =
3

4

(a) The mean of the signal x(n) is given by

mx = E[x(n)] = mw

∞∑
k=−∞

h(k) = 0, since mw = 0.

The autocorrelation function of the signal x(n) is given by

γxx(m) = γww(m) ∗ rhh(m),

where rhh(m) is the autocorrelation function of the unit sample response
h(n) of the filter (which is a deterministic signal), i.e.

rhh(m) =
∞∑

n=−∞
h(n)h(n+m)

The unit sample response for the filter is given by

h(n) = Z−1{H(z)} =

(
−1

2

)n

u(n).
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We first find the autocorrelation function rhh(m) for m ≥ 0,

rhh(m) =
∞∑

n=−∞

(
−1

2

)n

u(n)

(
−1

2

)n+m

u(n+m)

=

∞∑
n=0

(
−1

2

)2n+m

=

(
−1

2

)m ∞∑
n=0

(
−1

4

)n

=

(
−1

2

)m 1

1− 1
4

=
4

3

(
−1

2

)m

For m < 0, we have that rhh(m) = rhh(−m) = 4
3

(
−1

2

)−m
. It follows that

rhh(m) =
4

3

(
−1

2

)|m|
, for all m

The autocorrelation function of the signal x(n) is now given by

γxx(m) = γww(m) ∗ rhh(m) =
3

4
δ(m) ∗ 4

3

(
−1

2

)|m|
=

(
−1

2

)|m|
.

The power density spectrum of the signal x(n) is given by

Γxx(ω) = Γww(ω) |H(ω)|2

We can compute |H(ω)|2 from the transfer function H(z) by
remembering that H(ω) = H(z)|z=ejω .

|H(ω)|2 = H(ω)H∗(ω) =
1

1 + 1
2e

−jω
· 1

1 + 1
2e

jω
=

4

5 + 4 cosω
.

It follows that

Γxx(ω) =
3

4

4

5 + 4 cosω
=

3

5 + 4 cosω
.

The power of the signal x(n) is given by

Px = E[x2(n)] = γxx(0) = 1,

and variance

σ2
x = E[(x(n)−mx)

2] = E[x(n)2] = Px = 1, since mx = 0

(b) We have the following expressions for the estimates:

Mean:

m̂x =
1

N

N−1∑
n=0

x(n)
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Power:

P̂x =
1

N

N−1∑
n=0

x2(n)

Autocorrelation function:

γ̂xx(l) =


1
N

∑N−1
n=0 x(n)x(n+ l) for 0 ≤ |l| ≤ N − 1

0 for N ≤ |l|


Power spectral density:

Γ̂xx = DFT(γ̂xx(l))

(c) The signal x(n) can be estimated by first generating a segment of white
Gaussian noise using the Matlab command randn, and then filtering it
trough the filter H(z) using Matlab command filter.

The plots of γxx(m) and γ̂xx(m) are shown in Figure 3.
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Figure 3: Autocorrelation function and its unbiased estimate

(d)

Problem 3

The histograms for K=20, 40 and 100 are shown in Figure 4. We observe that
the variance of the mean estimate is reduced when the segment length is
increased. This is confirmed when the variances is computed using Matlab
command var.
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Figure 4: Histograms of the mean value computed on segments of length 20, 40 and
100
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