
TTT4120 Assignment 1
Øyvind Skaaden (oyvindps)

September 2, 2020

Problem 1.

(a) The signals x[n] og y[n] are sketched in Figure 1.

−6 −4 −2 2 4 6

2

4

6

n

x[n]

(a) Plot of x[n].

−6 −4 −2 2 4 6

−1

1

2

n

y[n]

(b) Plot of y[n].

Figure 1: Signalene x[n] og y[n] plottet.

(b) The signals x[n− 3] and x[n+ 3] are sketched in Figure 2.

−2 2 4 6 8

2

4

6

n

x[n− 3]

(a) Plot of x[n− 3].

−8 −6 −4 −2 2

2

4

6

n

x[n+ 3]

(b) Plot of x[n+ 3].

Figure 2: Signalene x[n− 3] og x[n+ 3] plottet.

1

TTT4120 Øyvind Skaaden (oyvindps) Assignment 1

(c) Plot for x[−n].

−6 −4 −2 2 4 6

2

4

6

n

x[−n]

Figure 3: x[−n]

(d) Plot for x[5− n] = x[−(n− 5)].

−2 2 4 6 8

2

4

6

n

x[5− n]

Figure 4: x[5− n] = x[−(n− 5)]

2

TTT4120 Øyvind Skaaden (oyvindps) Assignment 1

(e) Plot for x[n] · y[n].

−4 −2 2 4 6 8

2

4

n

x[n] · y[n]

Figure 5: x[n] · y[n]

(f) The sequence

x[n] =

{
5− n 0 ≤ n ≤ 4

0 otherwise
(1)

can be described in simple form

x[n] = 5δ[n] + 4δ[n− 1] + 3δ[n− 2] + 2δ[n− 3] + δ[n− 4] (2)

(g) The sequence

y[n] =

{
1 2 ≤ n ≤ 4

0 otherwise
(3)

can be described in simple form

x[n] = u[n− 2]− u[n− 5] (4)

(h) The energy in x[n] are given by:

Ex =

∞∑
n=−∞

|x[n]|2 (5)

=
4∑

n=0

(n− 5)2 (6)

= 25 + 16 + 9 + 4 + 1 = 55 (7)

3

TTT4120 Øyvind Skaaden (oyvindps) Assignment 1

Problem 2.

(a) We have that the physical frequencies for F1 must be of a value that makes f1 = F1
FS

∈
[
−1

2 ,
1
2

)
.

By inserting FS = 6000Hz we get that F1 ∈ [−3000 Hz, 3000 Hz).

(b) Code used for generating the different signals in Listing 1.

1 import numpy as np
2 import sounddevice as sd
3

4 # Physical freq to "sample", must be integer
5 F_1 = 1000
6 # Volume must be between 0 and 100, may be float
7 volume = 20
8 # Sampling freq, must be integer
9 F_s = 6000

10 # Time how long a sample should last, must be integer
11 duration = 4
12

13 # Calculation of constants
14 volume = volume / 100
15 totalSamples = F_s * duration
16

17 # Comment out the last decleration if you want to use a fixed f1
18 f_1 = 0.3
19 #f_1 = F_1 / F_s
20

21 def GenSound(f1, noSamples, vol):
22 x = np.empty(noSamples)
23 for n in range(noSamples):
24 x[n] = np.cos(2*np.pi * f1 * n) * vol
25 return x
26

27 x = GenSound(f_1, totalSamples, volume)
28

29 print(x)
30

31 sd.play(x, F_s)
32 sd.wait()
33 sd.stop()

Listing 1: Code used to generate and play the tones in the following parts.

4

TTT4120 Øyvind Skaaden (oyvindps) Assignment 1

(c) When increasing the sampleling rate FS , with a fixed f1 = 0.3, the tone gets brighter.
If we look at the formula for the physical frequency, given f1 and FS .

F1 = f1 · FS (8)

Whitch for FS = [1000 Hz, 3000 Hz, 12000 Hz], gives F1 = [300 Hz, 900 Hz, 3600 Hz] respectivly.

(d) This is the reverse problem from (c). We use the formula (9), and use FS = 8000 Hz and
F1 = [1000 Hz, 3000 Hz, 6000 Hz].

f1 =
F1

FS
(9)

From (9) we get f1 =
[
1
8 ,

3
8 ,

6
8 = 3

4

]
. Since f1 ∈

[
−1

2 ,
1
2

]
, and is ”periodic”, we can see that

f1 =
3
4 is the same as f1 = 1− 3

4 = −1
4 . When we calculate the actual frequencies, we get as

in

Fsampled =


1000 Hz when f1 =

1
8

3000 Hz when f1 =
3
8

−2000 Hz when f1 = −1
4

(10)

When we see a negative frequency, it just means that it is phase-shifted by π.

Problem 3.

(a) y[n] = x[n]− x2[n− 1]. Since we have an x2-part, the equation is non linear. This is causal
because we only use samples that are present or past. And this is also time-invariant, since
none of the coefficients are dependent of n.

(b) y[n] = nx[n] + 2x[n − 2]. Here, the equation only consists of linear combinations of x[n],
therefore the total equation is linear. Since we have one of the coefficients depending on n
this is not time-invariant. This is also causal, because it only is dependent on samples from
present or past.

(c) y[n] = x[n] − x[n − 1]. This equation is a linear combination of x[n]’s, and therefore linear.
This is time-invariant, because it does not have coefficients depending on n. This is causal,
because it only uses samples from the present or past.

(d) y[n] = x[n] + 3x[n+ 4]. This equation is a linear combination of x[n]’s, and therefore linear.
This is time-invariant, because it does not have coefficients depending on n. Since this is
dependent on a sample from the future, 3x[n+ 4], the equation is non-causal.

5

TTT4120 Øyvind Skaaden (oyvindps) Assignment 1

Problem 4.

We have the following two difference equations.

y1[n] = x[n] + 2x[n− 1] + x[n− 2] (11)
y2[n] = −0.9y[n− 1] + x[n] (12)

(a) The unit sample response is possible to obtain by sending in a unit sample into the equation.
For (11), we simplify and use the unit sample.

h1[n] = δ[n] + 2δ[n− 1] + δ[n− 2] (13)

=


1 n = 0

2 n = 1

1 n = 2

0 otherwise

(14)

For (12) we use the same trick, but this is dependent on the last processed sample.

h2[n] = −0.9h2[n− 1] + δ[n] (15)

We know from the original equation that (12) is causal, therefore must for n < 0 the IR be
zero.

h2[n] = 0, n < 0 (16)
⇒h2[0] = −0.9h2[−1] + δ[0] = 0 + 1 = 1 (17)

We can from this see that the IR is recursive, where it only depends on the previous sample
−0.9h[n− 1].
By doing some repetitions, we can find a more generic formula.

h2[0] = 1 (18)
h2[1] = −0.9 · 1 = −0.9 (19)
h2[2] = −0.9 · −0.9 = (−0.9)2 (20)
h2[3] = −0.9 · (−0.9)2 = (−0.9)3 (21)

...
h2[n] = (−0.9)n = (−1)n · (0.9)n n ≥ 0 (22)
h2[n] = (−1)n · (0.9)n · u[n] (23)

The IR of y2[n] are an alternating exponentially decaying function.

(b) Since h1[n] has a finite amount of samples in the IR, this is a FIR.
h2[n] does not have a boundry of how long it could keep on going, so this is a IIR.

6

TTT4120 Øyvind Skaaden (oyvindps) Assignment 1

(c) To check if a system is stable or not. We need to check that (24) holds for each of the filters.

∞∑
n=−∞

|h[n]| < ∞ (24)

Starting with h1[n].

∞∑
n=−∞

|h1[n]| =
2∑

n=0

|h1[n]| (25)

= 1 + 2 + 1 = 4 (26)
⇒ h1[n] is stable.

h2[n]:
∞∑

n=−∞
|h2[n]| =

∞∑
n=0

|(−0.9)n| (27)

=
∞∑
n=0

(0.9)n (28)

=
1

1− 0.9
| using sum of infinite geometric series (29)

= 10 (30)
⇒ h2[n] is stable.

(d) In Figure 6 and 7, you can see the filter structure for the different equations.

z−1

z−1

2

x[n] y[n]

Figure 6: Filter structure of y1[n] = x[n] + 2x[n− 1] + x[n− 2].

7

TTT4120 Øyvind Skaaden (oyvindps) Assignment 1

x[n]

z−1

-0.9

y[n]

Figure 7: Filter structure of y2[n] = −0.9y[n− 1] + x[n].

8

TTT4120 Øyvind Skaaden (oyvindps) Assignment 1

Problem 5.

(a) Plot for y1[n].

−2 2 4 6

2

4

6

8

n

y1[n]

Figure 8: y1[n]

(b) Plot for y2[n].

5 10 15

5

10

15

n

y2[n]

Figure 9: y2[n]

(c)

9

TTT4120 Øyvind Skaaden (oyvindps) Assignment 1

(d) Since convolution is commutative, it does not matter in what order we use the filters. The
output would still be like in Figure 9. The more interesting part is what happens at the point
y1[n], when the order is changed. Plot for yh2 [n] after using h2 instead of h1.

5 10 15

2

4

6

n

yh2 [n]

Figure 10: yh1 [n]

10

