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Problem 1
(a) For the RC-filter we have
z(t)=Ri+y(t) and i= Cd?iiit)
and after insertion
x(t) = RCdZSf) +y(t).

Laplace transforming gives
X(s) = RCsY (s) + Y (s)

from which we get the transfer function
Y(s) 1
H = =
)= X5 " Res+ 1

Now consider the RL-filter. We have

di
y(t) = Ld—z and

Differentiating the latter equation and substituting in the former

2(t) = Ri+ y(t).

equation gives
dx(t) di  dy(t)
— R— 4+ 2\
dt dt * dt
R dy(t)
= —y(t —.
Ty +—
Taking the Laplace transform of the above equation results in
R
sX(s) = ZY(S) + sY (s),
and the transfer function is
Y(s) s




(b) The frequency response for the RC-filter is given by

1

H(Q) = H(*S)‘s:jﬂ = m

The magnitude response is thus given by

1

HO] = 7= (QRO)?

We see that
|H(0)]=1 and |H(c0)| =0,

and |H (€)| is monotonically decreasing function of 2, which are the
characteristics of a lowpass filter.

The frequency response for the RL-filter is given by

i
H(Q) = H(s)|s=jo = =5
jQ + T
The magnitude response is thus given by
Q 1

[H()| = = :
B2 \/%4—1

We see that

H(0) =0 and |H(co)| =1,
and |H (€)| is monotonically increasing function of Q, which is the
characteristics of a highpass filter.

(c) The transfer function of the RC-filter can be written as

1/RC

H(s) = = 3/Re

The impulse response can be determined simply from the table of
common Laplace-transform pairs
1 ¢
h(t) = —= e  RC u(t
(1) = e € 7 u(t)
To find the impulse response of the RL-filter, first note that the transfer
function can be written

H(s)=1- sf/RfJ/L
Then B
h(t) = 8(t) - T e T lu(t)



Alternatively, h(t) can be found in the following way. We have
1

H(s):s's_i_ﬂ =s-G(s)
L
=[s-G(s) —g(0)] +g(0) - 1

It follows from the derivation property of the Laplace transform that

(e = £ ()} = 20 4 6(0) - 500

Furthermore,

which gives

Problem 2

(a)

h(t) = —% e T hu(t) +6(t)
Hz) = — 1§z1

Since the system is causal, the region of convergence (ROC) is defined as
|2| > |Pmax|, where pmax denotes the pole in the system with the largest
magnitude.

The system has a pole at z = 2/3, so the ROC is |z] > 2/3.

The impulse response h(n) can be found by taking the inverse
z-transform of the transfer function H(z). From Table 3.3 in the
textbook we see that

1
—az

For z = % this gives:

HE) =y

Since the system is causal, the region of convergence (ROC) is defined as
|| > |Pmax|, where pmax denotes the pole in the system with the largest
magnitude.

The system has poles at z = —1/2 and z = 1, so the ROC is |z| > 1.



We can decompose H(z) as

A B
H(z) =
(Z) 1_'_%271 1 _2717
where
1 1 1
and ) ) )
B=H(z)(1-2z1 =— = T =3
Then 1 ) 5 )
H(z) = = . z.
T
and
_ 1 __ 1 2 1
hn) = 2 HH )} = 527 )+ 52 )
2

_ % (—;)nu(n) + %u(n),

where we have used the fact that ROC is |z| > 1.

Z_l

H(z) =
() (14 3271)(1-3271)
Since the system is anti-causal, the region of convergence (ROC) is

defined as |z| < |pmin|, where ppin denotes the pole in the system with
the smallest magnitude

The system has a pole at z = —2 and z = 3, so the ROC is |2| < 3.

We can decompose H(z) as

A B
H(z) =
(=) 1+3.1  1-321
where .
- 2
A=H(z)(1+ 22! == ==
O M e vt I 59
and .
z 2
B=H(x)(1-3"Y =-—2—| =2
(2)( )Z:3 e
Then
_2 2
H — 9 9
=) 1+ 3271 1 — 3271
and
2 - 2
An) = £ (Sl = 1) = & Fu(-n 1),

where we have used the fact that ROC is |z < 3.

4



(d) A filter is stable if its ROC contains the unit circle (]z| = 1). We see that
this is satisfied for the filters in a) and c¢), but not for the filter in b).

Problem 3

(a) The z-transform of h(n) is

H(z)= > h(n)z"

X(z) = Z xz(n)z™"

(b) Start by noting that we can write h(n) = s-u(n) and z(n) = u(n — 2).
Then

= > h(k)z(n—k)
k=—o00
3 %u(k)u(n PR
k=—00
= %u(n —2—k)
k=0

Note that u(n —2 — k) =0 for n —2 — k <0, i.e. k> n — 2. Therefore
we have

) k
y(n): Z:O (%) n—220
0 n—2<0,



this gives

This can be written as
1 n—2
v =2u(n-2) - (3)  ut-2),

(c) X(z) and H(z) were computed in 4a.

Then
Y(z) = H(2)X(2)
52
(- -2
=272y (2), for |z > 1.
where )
Yi(z) = |z| > 1.

(I—3 -2zt

y1(n) follows from the result in 2b:

y(n) = — <;>nu(n) + 2u(n).

Therefore we have

y(n) =Z7H{27V1(2)} = pi(n - 2)

1

_ (2>n2 u(n — 2) + 2u(n — 2)

which is the the same as we got in (a).

Problem 4

(a) We can find the transfer function H(z) by taking the z-transform on
both sides of the difference equation:

Y(2) = X(2) — X(2)22 — iY(z)z_Z

Y(2)(1+ iz H=X(2)(1-27?)
CY(z)  1-2z72

H(Z) - X(Z) - 1+ 4112_2



(b) The poles can be found as follows:

1 1 1
( T ) P1 =57, P2 Y

1
|p1| = |p2\ = 9
The zeros can be found as follows:
(1-27%)=0 = z1=1, n=-1

The pole-zero plot in the z-plane is shown in the following figure(use
following command "zplane([1 0 -1],[1 0 1/4]))”:
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Figure 1: Pole-zero plot

(c) Since the filter is causal with poles on the circle with radius 1/2, its
ROC is outside of the circle. Since the ROC includes the unit circle, the
filter is stable.

(d) For w = 0 we have the zero on the unit circle, so the amplitude response
will be zero. Increasing the w from 0 to 7, the distance from the zero



increases, while the distance to the pole p; decreases. The amplitude
response will thus increase and reach its maximum at w = 5. As w
increases further from 7 to m, the amplitude response decreases and
reaches zero again at w = .

We conclude that this is a bandpass filter with the passband centred

around w = g



