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Problem 1

(a) For the RC-filter we have

x(t) = Ri+ y(t) and i = C
dy(t)

dt

and after insertion

x(t) = RC
dy(t)

dt
+ y(t).

Laplace transforming gives

X(s) = RCsY (s) + Y (s)

from which we get the transfer function

H(s) =
Y (s)

X(s)
=

1

RCs+ 1
,

Now consider the RL-filter. We have

y(t) = L
di

dt
and x(t) = Ri+ y(t).

Differentiating the latter equation and substituting in the former
equation gives

dx(t)

dt
= R

di

dt
+

dy(t)

dt

=
R

L
y(t) +

dy(t)

dt
.

Taking the Laplace transform of the above equation results in

sX(s) =
R

L
Y (s) + sY (s),

and the transfer function is

H(s) =
Y (s)

X(s)
=

s

s+ R
L

.
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(b) The frequency response for the RC-filter is given by

H(Ω) = H(s)|s=jΩ =
1

jΩRC + 1
.

The magnitude response is thus given by

|H(Ω)| = 1√
1 + (ΩRC)2

.

We see that
|H(0)| = 1 and |H(∞)| = 0,

and |H(Ω)| is monotonically decreasing function of Ω, which are the
characteristics of a lowpass filter.

The frequency response for the RL-filter is given by

H(Ω) = H(s)|s=jΩ =
jΩ

jΩ+ R
L

.

The magnitude response is thus given by

|H(Ω)| = Ω√
R2

L2 +Ω2
=

1√
R2

(ΩL)2
+ 1

.

We see that
|H(0)| = 0 and |H(∞)| = 1,

and |H(Ω)| is monotonically increasing function of Ω, which is the
characteristics of a highpass filter.

(c) The transfer function of the RC-filter can be written as

H(s) =
1/RC

s+ 1/RC

The impulse response can be determined simply from the table of
common Laplace-transform pairs

h(t) =
1

RC
e−

t
RC u(t)

To find the impulse response of the RL-filter, first note that the transfer
function can be written

H(s) = 1− R/L

s+R/L
.

Then

h(t) = δ(t)− R

L
e−

R
L
t u(t)
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Alternatively, h(t) can be found in the following way. We have

H(s) = s · 1

s+ R
L

= s ·G(s)

= [s ·G(s)− g(0)] + g(0) · 1

It follows from the derivation property of the Laplace transform that

h(t) = L−1{H(s)} =
dg(t)

dt
+ g(0) · δ(t)

Furthermore,

g(t) = L−1{G(s)} = e−
R
L
t u(t),

which gives

h(t) = −R

L
e−

R
L
t u(t) + δ(t).

Problem 2

(a)

H(z) =
1

1− 2
3z

−1

Since the system is causal, the region of convergence (ROC) is defined as
|z| > |pmax|, where pmax denotes the pole in the system with the largest
magnitude.

The system has a pole at z = 2/3, so the ROC is |z| > 2/3.

The impulse response h(n) can be found by taking the inverse
z-transform of the transfer function H(z). From Table 3.3 in the
textbook we see that

Z−1

(
1

1− az−1

)
= anu(n) for ROC : |z| > |a|,

For z = 2
3 this gives:

h(n) =

(
2

3

)n

u(n)

(b)

H(z) =
1

(1 + 1
2z

−1)(1− z−1)

Since the system is causal, the region of convergence (ROC) is defined as
|z| > |pmax|, where pmax denotes the pole in the system with the largest
magnitude.

The system has poles at z = −1/2 and z = 1, so the ROC is |z| > 1.
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We can decompose H(z) as

H(z) =
A

1 + 1
2z

−1
+

B

1− z−1
,

where

A = H(z)(1 +
1

2
z−1)

∣∣∣∣
z=− 1

2

=
1

1− z−1

∣∣∣∣
z=− 1

2

=
1

1 + 2
=

1

3

and

B = H(z)(1− z−1)

∣∣∣∣
z=1

=
1

1 + 1
2z

−1

∣∣∣∣
z=1

=
1

1 + 1
2

=
2

3

Then

H(z) =
1

3
· 1

1 + 1
2z

−1
+

2

3
· 1

1− z−1

and

h(n) = Z−1{H(z)} =
1

3
Z−1{ 1

1 + 1
2z

−1
}+ 2

3
Z−1{ 1

1− z−1
}

=
1

3

(
−1

2

)n

u(n) +
2

3
u(n),

where we have used the fact that ROC is |z| > 1.

(c)

H(z) =
z−1

(1 + 3
2z

−1)(1− 3z−1)

Since the system is anti-causal, the region of convergence (ROC) is
defined as |z| < |pmin|, where pmin denotes the pole in the system with
the smallest magnitude

The system has a pole at z = −3
2 and z = 3, so the ROC is |z| < 3

2 .

We can decompose H(z) as

H(z) =
A

1 + 3
2z

−1
+

B

1− 3z−1
,

where

A = H(z)(1 +
3

2
z−1)

∣∣∣∣
z=− 3

2

=
z−1

1− 3z−1

∣∣∣∣
z=− 3

2

= −2

9

and

B = H(z)(1− 3z−1)

∣∣∣∣
z=3

=
z−1

1 + 3
2z

−1

∣∣∣∣
z=3

=
2

9
.

Then

H(z) =
−2

9

1 + 3
2z

−1
+

2
9

1− 3z−1

and

h(n) =
2

9
· (−3

2
)nu(−n− 1)− 2

9
· 3nu(−n− 1),

where we have used the fact that ROC is |z| < 3
2 .
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(d) A filter is stable if its ROC contains the unit circle (|z| = 1). We see that
this is satisfied for the filters in a) and c), but not for the filter in b).

Problem 3

(a) The z-transform of h(n) is

H(z) =
∞∑

n=−∞
h(n)z−n

=

∞∑
n=0

1

2n
z−n

=
∞∑
n=0

(
1

2
z−1)n

=
1

1− 1
2z

−1
, for |z| > 1

2

and the z-transform of x(n) is

X(z) =

∞∑
n=−∞

x(n)z−n

=

∞∑
n=2

z−n

=
z−2

1− z−1
, for |z| > 1.

(b) Start by noting that we can write h(n) = 1
2nu(n) and x(n) = u(n− 2).

Then

y(n) = h(n) ∗ x(n)

=

∞∑
k=−∞

h(k)x(n− k)

=

∞∑
k=−∞

1

2k
u(k)u(n− 2− k)

=
∞∑
k=0

1

2k
u(n− 2− k)

Note that u(n− 2− k) = 0 for n− 2− k < 0, i.e. k > n− 2. Therefore
we have

y(n) =

{∑n−2
k=0

(
1
2

)k
n− 2 ≥ 0

0 n− 2 < 0,
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this gives

y(n) =


1−( 1

2)
n−1

1− 1
2

= 2−
(
1
2

)n−2
n− 2 ≥ 0

0 n− 2 < 0,

This can be written as

y(n) = 2u(n− 2)−
(
1

2

)n−2

u(n− 2),

(c) X(z) and H(z) were computed in 4a.

Then

Y (z) = H(z)X(z)

=
z−2

(1− 1
2z

−1)(1− z−1)

= z−2Y1(z), for |z| > 1.

where

Y1(z) =
1

(1− 1
2z

−1)(1− z−1)
, |z| > 1.

y1(n) follows from the result in 2b:

y1(n) = −
(
1

2

)n

u(n) + 2u(n).

Therefore we have

y(n) = Z−1
{
z−2Y1(z)

}
= y1(n− 2)

= −
(
1

2

)n−2

u(n− 2) + 2u(n− 2)

which is the the same as we got in (a).

Problem 4

(a) We can find the transfer function H(z) by taking the z-transform on
both sides of the difference equation:

Y (z) = X(z)−X(z)z−2 − 1

4
Y (z)z−2

Y (z)(1 +
1

4
z−2) = X(z)(1− z−2)

H(z) =
Y (z)

X(z)
=

1− z−2

1 + 1
4z

−2
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(b) The poles can be found as follows:(
1 +

1

4
z−2

)
= 0 ⇒ p1 =

1

2
j, p2 = −1

2
j

|p1| = |p2| =
1

2

The zeros can be found as follows:(
1− z−2

)
= 0 ⇒ z1 = 1, z2 = −1

The pole-zero plot in the z-plane is shown in the following figure(use
following command ”zplane([1 0 -1],[1 0 1/4]))”:
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Figure 1: Pole-zero plot

(c) Since the filter is causal with poles on the circle with radius 1/2, its
ROC is outside of the circle. Since the ROC includes the unit circle, the
filter is stable.

(d) For ω = 0 we have the zero on the unit circle, so the amplitude response
will be zero. Increasing the ω from 0 to π

2 , the distance from the zero
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increases, while the distance to the pole p1 decreases. The amplitude
response will thus increase and reach its maximum at ω = π

2 . As ω
increases further from π

2 to π, the amplitude response decreases and
reaches zero again at ω = π.

We conclude that this is a bandpass filter with the passband centred
around ω = π

2 .
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