

1

Denotational semantics

2

What we're doing today

• We're looking at how to reason about the effect of a
program by mapping it into mathematical objects
– Specifically, answering the question “which function does this

program compute?”

• We'll run into some issues when we get to programs
that potentially never stop with a result
– We're going for functions between environment states, they can

only be partial functions when there are states that produce no end
state

3

What is a program, anyway?

• As far as the machine is concerned: instructions, data,
memory, yadda yadda...

• Those are all configurations of tiny switches, oblivious
to the computation they represent in the same way that
a traffic light doesn't know what its states and
transitions tell people

• Independent of the machine, a program is also a
description of a method to compute a result
– To programmers, at least

4

What can we compute?

• A primitive recursive function is defined in terms of
– The constant function 0 (which takes no arguments, and outputs 0)
– The successor function S(k) = k+1 (which adds 1 to a number)

– The projection function Pi
n (x1, …, xi, …, xn) = xi (which selects value number i out of

a bunch of values

• These are enough to define a bit of arithmetic:
– The most tedious addition method in the world...

add (0, x) = x ← base: x+0 = x

add (S(n), x) = S (P1
3 (add(n,x), n, x)) ← step: x+(n+1)=(x+n)+1

– The most tedious subtraction method follows, from sub. by differences
– Multiply and divide can be built from add & sub, and so on and so forth...
– It all boils down to simple schemes of counting one step at a time

5

The primitive side of it

• Primitive recursive functions can compute anything which
maps uniquely onto all the natural numbers, under some kind
of encoding/interpretation

• That is, they're total, meaning “uniquely defined for all
admissible sets of inputs”

• Everything which maps to natural numbers is quite a bunch
of stuff, but it's restricted to programs that terminate with a
defined result
– Hence, no branching and nothing fancy, please

– That's kind of primitive

6

Partial recursive functions

• If we add the power of saying something like
(∃y) R(y,x)

to mean

“The smallest x such that R(y,x) is true”, or

“0” if no such y exists

we get a conditional, of sorts.

• We also have equivalence with Turing machines: conditionals +
jumps can be written as conditionals + recursion
– Writing out anything nontrivial in this notation is also the equivalent amount of fun

as writing them out in terms of Turing machines

– Let's not go there, the point is that they're equivalent

7

That's the edge of the world
(computationally speaking)

• With enough spare time on your hands, it can be proven that the
partial recursive functions are also exactly what can be computed by
– Lambda calculus
– Register machines
– A few more exotic models of computation

• At a point where he must have been tired of proving things, Alonzo
Church (λ-calculus Guy) made his mind up that these are the
functions we can get from any computational model, and left it at
that. We'll take his word for it.

• As we know, loops can be infinite, so these functions don't have
values for all inputs any more

8

What a program is

• Hence, one way of looking at “a program” is that it's an evaluation of
a partial recursive function.

• Neither programmer nor program may care, it just means that you
can always write it out that way
– Programs which stop have their function's value for the given input
– Programs which don't stop don't have any kind of value, because they never produce

one

• Infinite loops can be very annoying
– At least when you wanted to calculate a result

• Infinite loops can be very useful
– I will be upset if my laptop halts to conclude that the value of the operating system is 42

9

Which programs stop?

• We can not compute the answer to that
– Suppose that we could, and had a function

halts (p(x)) =

if magical_analysis(p(x)) then yes

else no

– Never mind how it works, just suppose that it can take any function p with
any input x, and answer whether or not it returns

– This lets us write a function that answers only about programs which have
themselves as input:

halts_on_self (p) =

if (halts (p(p))) then yes

else no

10

I have a cunning plan...

– We can easily make a function run forever on purpose, so write one which does that when a
function-checking function halts on itself:

trouble (p) =

if (halts_on_self(p)) then loop_forever

else yes

– Since 'trouble' is a function-checking function, we can see what it would make of itself:
trouble (trouble) =

if (halts_on_self(trouble)) then loop_forever

else yes

which is equivalent to
trouble (trouble) =

if (halts(trouble(trouble))) then loop_forever

else yes

– If it halts, it should loop forever ; if it loops forever, it should halt.
– This program can not exist, so the halting function can not.

11

That's why this gets messy

• We just looked at a pseudocode-y variant of Turing's
proof that the halting problem is not computable

• It can also be written out in terms of a counting scheme
and partial recursive functions, but this way may be a bit
more intuitive

• Bottom line: we can't expect to find well behaved
functions for every arbitrary program

• Without that, we have to take extra care of how to define
a program in terms of its function

12

Revisiting the operational approach

• Focus was on how a program is executed

• Each syntactic construct is interpreted in terms of the
steps taken to modify the state it runs in

• The semantic function is described by a recipe for
how to compute its value (the final state), when it has
one

13

“Denote” (verb):

• To serve as an indication of

• To serve as an arbitrary mark for

• To stand for

14

Denotational semantics

• The program is a way to symbolize a semantic
function

• Its characters are arbitrary, as long as we can
systematically map them onto the mathematical
objects they represent
– The string “10” can mean natural number 10 (decimal), 2 (binary),

16 (hexadecimal)...

– ...in Roman numerals, 10 is “X”...

– The symbol is one thing, what it denotes is another

15

Basic parts

• The hallmarks of denotational semantics are
– There is a semantic clause for all basis elements in a category of

things to symbolize

– For each method of combining them, there is a semantic clause
which specifies how to combine the semantic functions of the
constituents

16

The simplest illustration

• Take this grammar for arbitrary binary strings:
b → 0

b → 1

b → b 0

b → b 1

• ...and let b,0,1 stand for the symbols in our
grammar, while {0,1,2,...} are the natural numbers...

17

A semantic function

• We can write a function N to attach the natural numbers to
valid statements in the grammar:

N (0) = 0

N (1) = 1

N (b 0) = 2 * N (b)

N (b 1) = 2 * N (b) + 1

• This is just the ordinary interpretation of binary strings as
unsigned integers, written out all formal-like

• Each notation is related to the mathematical object it
denotes (here, it's a natural number)

18

Finding a value

• Using this formalism, we can write out what the value
of “1001” is:

N (1001)

= 2 * N (100) + 1

= 2 * (2 * N (10)) + 1

= 2 * (2 * (2 * N (1))) + 1

= 2 * (2 * (2 * 1)) + 1

= 2 * (4) + 1

= 9

N (0) = 0
N (1) = 1
N (b 0) = 2 * N (b)
N (b 1) = 2 * N (b) + 1

19

Finding a value

N (1001)

= 2 * N (100) + 1

= 2 * (2 * N (10)) + 1

= 2 * (2 * (2 * N (1))) + 1

= 2 * (2 * (2 * 1)) + 1

= 2 * (4) + 1

= 9

Symbols from grammar
are systematically replaced
with their semantic
interpretations

Result is a thing the input can't contain,
and the compiler can't understand

20

Is this a valuable thing?

• Well... the example is so small that it's almost pointless
• In principle, however:

– Assume an implementation which sets lowest order bit according to
last symbol in string, and shifts left to multiply by 2

– In a signed byte-wide register w. 2's complement, this would make the
value of 11111111 = -1, whereas N(11111111) = 255

– With semantics defined by the implementation, whatever comes out is
the standard of what's correct

– Semantic specification in hand, we can say that such an
implementation doesn't do what it's supposed to

21

Remember the While
language:
• Syntax:

a → n | x | a1 + a2 | a1 * a2 | a1 – a2

b → true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 & b2

S → x := a | skip | S1 ; S2

S → if b then S1 else S2 | while b do S

• Syntactic categories:
n is a numeral

x is a variable

a is an arithmetic expression, valued A[a]

b is a boolean expression, valued B[b]

S is a statement

22

Denotational semantics for While

• What we attach to the statements should be a function which
describes the effect of a statement
– The steps taken to create that effect is presently not our concern

• Skip and assignment are still easy:

Sds [x:=a] s = s [x → A[a]s] (as before)

Sds [skip] = id (identity function)

• Composition of statements corresponds to composition of
functions:

Sds [S1; S2] = Sds [S2] ○ Sds [S1]
“S2-function applied to the result of S1-function”, cf. how f ○ g (x) ↔ f (g (x))

23

Conditions need a notation

• Specifically, a function which goes from one boolean and
two other functions, and results in one of the two functions

• Let's call it cond, and write
Sds [if b then S1 else S2] = cond (B[b], Sds [S1], Sds [S2])

with the understanding that, for example,

cond (B[true], Sds [x:=2], Sds [skip]) s = s [x → A[2]s]

and

cond (B[false], Sds [x:=2], Sds [skip]) s = id s

24

'while b do S' gets a little tricky

• What we need is a function applied to a function applied to
a function... as many times as the condition is true

• Problems:
– The program text does not always determine how many times the

condition will be true
– It is not guaranteed that it ever will be false

• The function we are looking for is specific to each program
– We have a notation to denote “the outcome of the loop body”: Sds[S]

– We need one to denote “the outcome of repeating the loop body an
unknown number of times”

25

Calculating with functionals

• In the manner that a variable is a named placeholder
for a range of values...

• ...and a function is a named placeholder for a way to
combine variables...

• ...so a functional F is a generalized range of
functions, which can stand for any of them

26

Functions as unknowns

• This lets us treat a functional F as “the function which fits our
constraints”
– in the same way we can write x for “the value which fits the constraint x*2+12 = 42”, and

treat x as the solution to that

• Looking at how to read 'while b do S', we can write out its halting
condition in terms of cond (from before), and an unknown function g:

F g = cond (B[b], g ○ Sds[S], id)

• That is: given any function g (as “input”), the functional F represents
either the effect of applying g to the outcome of the loop body, or the
identity function, depending on B[b].

• The resulting function can be applied to states where B[b] has a value

27

Definition of a “fixed point”

• This is mercifully simple

• A fixed point is where taking an argument and doing
some stuff to it results in the argument itself

• i.e. when f(x) = x, then x is a fixed point of f

• 2 is a fixed point of f(x) = (x2 / 2x) + 1

• It's “fixed” since it doesn't change no matter how
many times you apply the function:

x = f(x) = f(f(x)) = f(f(f(x))) = …and so on

28

Thus, we can (partly) describe
the effect of 'while b do S'
• Sds [while b do S] = FIX F

where F g = cond (B[b], g○Sds[S], id)

• That is, it's a function where it may be the case that
cond(B[b],Sds[S], id) s = s'

cond(B[b],Sds[S], id) s' = s''

...

cond(B[b],Sds[S], id) s(n-1) = s(n)

but eventually,
cond(B[b],Sds[S], id) s(n) = s(n)

and the loop doesn't alter anything any more.
– That will be the case when it has ended
– When it doesn't end, we can't describe the effect, and no solution should be defined

29

So, what's the outcome of a loop?
(Without running it?)

• Take the factorial program we looked at for the operational
case:

while ¬(x=1) do (y:=y*x; x:=x-1)

• We're interested in functions g that satisfy
cond (B[b], g○Sds[S], id) s = s

that is,

cond (B[b], g ○ [x → A[x:=x-1]] ○ [y → A[y*x]], id) s = s

• Generally, these have the form of the functional
(F g) s = g s if x is different from 1 (do something to the state)

(F g) s = s if x = 1 (that's the loop halting condition)

30

What kind of g fits FIX (F g)?

• Here's one:
g1 = g1 s if x>1

g1 = s if x=1

g1 = undef if x<1

• Here's another:
g2 = g2 s if x>1

g2 = s if x=1

g2 = s if x<1

• These are both fixed points of the functional (F g)
– Substitute g1 and g2 into it, you get that

(F g1) s = g1 s

and

(F g2) s = g2 s

Intuitive from program,
Loop eternally into neg. x if
it starts out too small

Also a function which
gives s back when x=1

31

An additional constraint

• We can create any number of g-s like this, we want to
narrow them down into one which reflects what the
program means

• Since we've abstracted away the implementation, we
need to say something about which fixed points are
admissible

32

When things loop forever

• If the execution of (while b do S) in state s never halts,
there is an infinite number of states s1, s2, … such that
– B[b] si = tt (i.e. the condition is true)

– Sds[S] si = si+1 (i.e. the loop continues to churn through states)

• An immediate example is
while ¬(x=0) do skip

and its matching functional
(F g) s = g s if x is different from 0 in s

(F g) s = s if x = 0 in s

33

Which fixed point are we after?

• The reason we have an infinity to choose from:
– Any g where g s = s if x=0 in s is a fixed point

• The intuition we aim to capture is that
g s = undef if x is different from 0

g s = s if x=0 in s

• Every other g will have to say something about s in at least some cases
when x isn't 0:

g' s = undef if x > 0

g' s = s if x = 0

g' s = s[y → A[y+1]s] if x < 0
– This also captures the effect of the program when it is defined, but adds a bunch of unrelated

nonsense about y when it is not defined
– Still a function that captures the effect of the program as much as the other one

34

Between the lines

• There is an ordering of all possible choices of g,
comparing them by how much they specify

• The relationship that
g0 s = s' implies g s = s' (but not the other way around)

indicates that all the effects of g0 are also in g
• Writing this as g0 ≼ g,

(with a slightly bent 'smaller-or-equal' character, to signify that this is a
different type of comparison than that between numbers)

we get a notion that there is a 'minimal' g

35

Making a unique choice

• Add the understanding that 'undef' implies anything
and everything
– Like 'false' does for the implication in boolean logic

• The least fixed point in this sense is the most concise
description of a loop's effect
– We'll take that one as the semantic function, then

36

Sum total

• Denotational semantics for While:

Sds [x:=a] s = s [x → A[a]s]

Sds [skip] = id

Sds [S1; S2] = Sds [S2] ○ Sds [S1]

Sds [if b then S1 else S2] = cond (B[b], Sds [S1], Sds [S2])

Sds [while b do S] = FIX F

where F g = cond (B[b], g○Sds[S], id)

and FIX F is the least fixed point

37

“Precision of an analysis”

• I alluded at one point that there is a notion of more
and less precise semantic analyses
– and mentioned that it carries a particular meaning of “precise”

• The part about finding the desired fixed point is it.
– “Most precise” is not the fixed point with the most information in

– It is the one which most accurately represents what we know about
the program

38

But seriously, why the...?

• Once again, we have taken an idea that plays a part in
the curriculum and stretched it, to see how it works out
when applied to a whole (but small) language

• The result is an algebra of semantic functions
– and a notion that our handle on halting is a fixed point of a semantic

function
– and an idea that such a function may have multiple fixed points
– and that these relate to each other in an order determined by how

much information they specify
– ...which I will say just a tiny bit more about next time

39

No seriously, why the...?

• Ok. The next (and last) part of theory is a framework for deciding on
how control flow affects what we can say about the state of a program.

• Its function maps statements to sets of variables, values, etc. to
reason about the program environment

• It halts on a fixed point of the function which produces those sets of
things

• It relates that fixed point to other fixed points in a ranking of how
precise their information is, using an unorthodox choice of operators

• It's pretty much a variant of what we just looked at, except it is
restricted to capturing state information which enables optimizations

40

So, that's what comes next?

• Yes.

• It'll be a little easier to anchor the state information in aspects
of the source code, but we'll still deal with some properties
that aren't embodied in the compiler program

• Hopefully, this overview may contribute a way to look at
dataflow analysis which makes it easier to see a system
among its details

• If it doesn't, you can figure things out anyway
– Don't lose any sleep over denotational semantics if you can follow DF analysis

without seeing the correspondence, it's meant as an alternate perspective

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

