
Problem Set 1

Answers are to be submitted via Blackboard. Please submit your answers
as an archive username.tar.gz containing a PDF file with answers to theoretical
questions, and a code directory like the provided one, containing all files required
to build your solution.

1 DFA for a small language

In this exercise, we will create a scanner to recognize a minimalistic language
for line drawings written as postscript files. It consists of these three types of
statements, which are all terminated by a newline character (’\n’):
dx=(integer)
dy=(integer)
go

The character sequences ’dx=’, ’dy=’, and ’go’ are fixed, integers consist
of a sequence of digits with an optional ’-’ character for negative values.

1.1

Draw a deterministic automaton (DFA) which accepts all three statement types.

1.2

Write a regular expression corresponding to your automaton.

1.3

Does your automaton use a minimal number of states?
Justify your answer.

2 Implementation

In the file archive ps1 skeleton.c, you will find an implementation of this
language which tracks a pair of (x,y) coordinates which are initialized to the
center of a page, and two values (dx,dy). The assignment statements in our

1

language set the (dx,dy) values respectively, and the ’go’ statement alters the
(x,y) coordinates by (dx,dy), drawing a line from the previous position to the
new one.

The main function already implements the table-based DFA simulation al-
gorithm, but its transition table is empty. When extended with a correct au-
tomaton in the table, this program will emit drawing instructions in postscript,
which can be converted to a PDF document. The archive also includes a sample
file of commands that draw a spiral (spiral.txt), which can be used to verify
your solution thus:
cat spiral.txt | ./scanner | ps2pdf - spiral.pdf

2.1

Convert your DFA to table format, and implement it in the
initialize transition table function found in scanner.c.
You can dimension the table to match the size of your automaton by modifying
the N STATES macro, and assign the accepting state using the ACCEPT macro.

2

