

1

Type checking

TDT4205 – Lecture 14

2

Where we left off

• We have introduced inference rules
– And connected them to syntax tree traversal

• We have talked about instantiating inference rules for
a simple ternary expression
– And how it relates to type checking

• We’ll continue now with
– Rules for type checking some different types of statements

– Connection to syntax tree traversal

– Static vs. dynamic type checking

3

Axioms

• Some statements don’t need any premises in order to
determine their type

env |- true : bool
reads that “true” is a boolean value in any environment,

similiarly,

env |- 42 : int
doesn’t depend on the environment either

4

Declarations

• These affect the environment, that’s what they’re for

env |- E : T env [id : T] |- (S2 ; S3 ; … ; Sn) : T’

 env |- id : T = E ; (S2 ; S3 ; … ; Sn) : T’

5

Assignments

• Identifiers

 env [id : T] |- E : T

env [id : T] |- id = E : T

• Arrays

env |- E1 : array(T) env |- E2 : int env |- E3 : T

 env |- E1[E2] = E3 : T

6

An abbreviation
• There is, implicitly, always an environment containing the context of the statement

• We don’t always need to refer to any part of it, so

env |- E1 : array(T) env |- E2 : int env |- E3 : T

 env |- E1[E2] = E3 : T

might as well be written

E1 : array(T) E2 : int E3 : T

 E1[E2] = E3 : T

without loss of information.

• When there is something to say about the env. contents,

 env [id : T] |- E : T

env [id : T] |- id = E : T

might as well just highlight the part we need, i.e.

 id : T |- E : T

id : T |- id = E : T

7

Expressions

• We looked a little bit at these already;
E1 : int E2 : int

 E1 + E2 : int

specifies that a sum of ints is an int,
E1 : int E2 : long

 E1 + E2 : long

suggests that adding promotes int to long

(or we could write
E1: T1 E2 : T2

 E1 + E2 : lub(T1,T2) ← (“lub” = “least upper bound”)

and specify a partial order of types...)

8

Whiles and sequences

E : bool S : T

 while(E) S : void

S1 : T1 S2; S3; S4; …; Sn : T’

S1; S2; S3; S4; …; Sn : T’

9

Function calls

• The type of a function can be written as the
(Cartesian) product of its argument types, and its
return type:

T1 x T2 x T3 x … x Tn → Tr

• Syntax-wise, calls are a case of expressions
E : T1 x T2 x T3 x … x Tn → Tr E1:T1 E2:T2 …

 E (E1, E2, E3, …, En) : Tr

10

Function declarations

• Suppose a declaration consists of a return type and a name,
Tr id

a list of parameters,
(T1 p1, T2 p2, …, Tn pn)

and a body which evaluates to something,
{ E; }

for a grand total of
Tr id (T1 p1, T2 p2, …, Tn pn) { E; }

• What we want is to check E in an environment where all the
parameters have their declared types, so put them in there, and
expect E to check out as the return type

11

Function declarations

 p1:T1, p2:T2, …, pn:Tn |- E : Tr

|- Tr id (T1 p1, T2 p2, …, Tn pn) { E; } : void

• Somewhere inside E, a return statement must
resolve to the return type Tr
– How to check it? Return values don’t appear in the local

environment of the function...

12

Return statements

• Use a placeholder in the environment

• If we introduce a “magic” variable ret with the return type

 p1:T1, p2:T2, …, pn:Tn, ret : Tr |- E : Tr

|- Tr id (T1 p1, T2 p2, …, Tn pn) { E; } : void

return statements can be checked as

 ret : T |- E : T

ret : T |- return E : void

13

What a type-check must do

Let’s define a function:

int square (int x) { return (x*x); }

square

returns
int

int arg
x ret_stmt

expr (*)

x x

14

What a type-check must do

Enter the function in a global symbol table

square

returns
int

int arg
x ret_stmt

expr (*)

x x

Global symbols
Name Type ...
Square function, int → int

15

What a type-check must do

Create a local context (either in the global table, or make another)

int arg
x ret_stmt

expr (*)

x x

Global symbols
Name Type ...
Square function, int → intsquare

returns
int Square’s symbols

Name Type ...
x int
ret int

ret_stmt

16

What a type-check must do

Check statements in the function body

ret_stmt

expr (*)

x x

Global symbols
Name Type ...
Square function, int → intsquare

returns
int Square’s symbols

Name Type ...
x int
ret int

int arg
x

(expect int here)

 ret : int E : T
 ret : int |- return E : void

17

What a type-check must do

Check each part of each statement

expr (*)

x x

Global symbols
Name Type ...
Square function, int → intsquare

returns
int Square’s symbols

Name Type ...
x int
ret int

int arg
x ret_stmt

x : int

x : int

E1 : T E2 : T
 E = E1 * E2 : T

____ _____
x : int x : int
E1 : int E2 : int
 E = E1 * E2 : int

(from the table)

(expr gives int)

18

What a type-check must do

Check each part of each statement

expr (*)

Global symbols
Name Type ...
Square function, int → intsquare

returns
int Square’s symbols

Name Type ...
x int
ret int

int arg
x ret_stmt

x x

(expected int)

(got one)

Hooray, ‘square’ is correctly typed

 (proof on prev slide)
 ret : int E : int
 ret : int |- return E : void

19

Three views on checking

• Implementation-wise, we traverse the syntax tree and enforce
the rules of the type system

• If the rules allow us to do that simultaneously with discovering
the syntax tree, it fits a syntax-directed translation scheme a la
Dragon

i.e. graft checking into the semantic actions of the parser

• Written as inference rules, it is a construction of a proof tree
which resolves a bunch of type judgments

• All the same thing, more or less

20

What we’ve looked at is static

• All information about types and values comes straight from the
source code
– That’s why we can do it by examining the syntax tree

– When the compiler is finished, so is the type checking

• It’s a process of binding
– Explicitly, as with “double z = 2.71828” (declaration says it)

– Implicitly, as with “z = 3.141593” (value gives it away)

and checking
– If z is consistently used as a double in the scope of this binding, the program is

type-safe

• Type-safety is the lack of type errors when the program runs

21

How safe is static checking?

• That depends on how it’s implemented.

• C lets you lie to the type checker, under the
assumption that you have control

• That includes creating type errors at run time

22

How safe is static checking?

• Java won’t have such shenanigans, and enforces
more safety

• Both check statically, but according to different rules

23

Dynamic types

• Other languages permit type information to appear at run
time, and check it then
– Scheme, Ruby, Python

• These are interpreted, but nothing prevents a compiler from
inserting dynamic type checks into the program it generates

• Some even give you static types when you declare
variables, and dynamic when you don’t
– Dylan pioneered this in 1995
– C# does it today

24

The strength of a type system

• Strongly typed languages guarantee that programs
are type-safe if they pass checking

• Weakly typed languages admit programs that contain
type errors

• A sound type system statically ensures that all
programs are type-safe

(Sound as in soundness, it doesn’t make any noise)

25

Strength is a design trade-off
• A program may be safe for reasons a compiler cannot

detect:

• This won’t fail, but it doesn’t type-check without
forced casting either

26

These words are not absolutes
• We saw that static checks in Java are less permissive than those in C

– Taken as a whole, Java types also have a dynamic twist to them

– Objects remember what type they are at run time, that’s why you can get
ClassCastExceptions instead of wrong answers

• Python does all its checking dynamically, and is pretty firm about
consistency (stronger)

>>> a = 42

>>> b = “42”

>>> print a == b # No number is a string

False

• PHP also works dynamically, but has a more liberal philosophy (weaker)
php > $a = 42;

php > $b = “42”;

php > var_dump ($a == $b); # Sure, why not?

bool(true)

27

Pros and cons of static types

(+) Speeeeeeeed…
Dynamic checking runs whenever the program does, and takes time

(+) Evergreen analysis
– Generated result does the same thing every time it runs

– Dynamic types admit dynamic type errors

(-) Has to be conservative
– Can’t defer check until values are known, must assume they can be

anything
– Stronger checking translates into accepting fewer programs

28

Next up

More elaborate, derived types
– Arrays
– Records
– Objects

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

