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Type checking

TDT4205 – Lecture 14
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Where we left off

• We have introduced inference rules
– And connected them to syntax tree traversal

• We have talked about instantiating inference rules for 
a simple ternary expression
– And how it relates to type checking

• We’ll continue now with
– Rules for type checking some different types of statements

– Connection to syntax tree traversal

– Static vs. dynamic type checking



  

3

Axioms

• Some statements don’t need any premises in order to 
determine their type

                          

env |- true : bool
reads that “true” is a boolean value in any environment,

similiarly,

                          

env |- 42 : int
doesn’t depend on the environment either
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Declarations

• These affect the environment, that’s what they’re for

env |- E : T            env [id : T] |- (S2 ; S3 ; … ; Sn) : T’

         env |- id : T = E ; (S2 ; S3 ; … ; Sn) : T’
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Assignments

• Identifiers

    env [id : T] |- E : T    

env [id : T] |- id = E : T

• Arrays

env |- E1 : array(T)       env |- E2 : int        env |- E3 : T

                 env |- E1[E2] = E3 : T
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An abbreviation
• There is, implicitly, always an environment containing the context of the statement

• We don’t always need to refer to any part of it, so

env |- E1 : array(T)       env |- E2 : int        env |- E3 : T

                 env |- E1[E2] = E3 : T

might as well be written

E1 : array(T)       E2 : int        E3 : T

                 E1[E2] = E3 : T

without loss of information.

• When there is something to say about the env. contents, 

    env [id : T] |- E : T    

env [id : T] |- id = E : T

might as well just highlight the part we need, i.e.

    id : T |- E : T    

id : T |- id = E : T
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Expressions

• We looked a little bit at these already;
E1 : int          E2 : int

      E1 + E2 : int

specifies that a sum of ints is an int,
E1 : int          E2 : long

    E1 + E2 : long

suggests that adding promotes int to long

(or we could write
E1: T1                       E2 : T2

      E1 + E2 : lub(T1,T2)                     ← (“lub” = “least upper bound”)

and specify a partial order of types...)
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Whiles and sequences

E : bool           S : T   

     while(E) S : void

S1 : T1                 S2; S3; S4; …; Sn : T’

S1; S2; S3; S4; …; Sn : T’



  

9

Function calls

• The type of a function can be written as the 
(Cartesian) product of its argument types, and its 
return type:

T1 x T2 x T3 x … x Tn → Tr

• Syntax-wise, calls are a case of expressions
E : T1 x T2 x T3 x … x Tn → Tr          E1:T1      E2:T2  …

                     E ( E1, E2, E3, …, En ) : Tr
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Function declarations

• Suppose a declaration consists of a return type and a name,
Tr id

a list of parameters,
(T1 p1, T2 p2, …, Tn pn)

and a body which evaluates to something,
{ E; }

for a grand total of
Tr id ( T1 p1, T2 p2, …, Tn pn ) { E; }

• What we want is to check E in an environment where all the 
parameters have their declared types, so put them in there, and 
expect E to check out as the return type
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Function declarations

           p1:T1, p2:T2, …, pn:Tn |- E : Tr          

|- Tr id ( T1 p1, T2 p2, …, Tn pn ) { E; } : void

• Somewhere inside E, a return statement must 
resolve to the return type Tr
– How to check it? Return values don’t appear in the local 

environment of the function...
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Return statements

• Use a placeholder in the environment

• If we introduce a “magic” variable ret with the return type

           p1:T1, p2:T2, …, pn:Tn, ret : Tr |- E : Tr          

|- Tr id ( T1 p1, T2 p2, …, Tn pn ) { E; } : void

return statements can be checked as

        ret : T |- E : T       

ret : T |- return E : void
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What a type-check must do

Let’s define a function:

int square ( int x ) { return (x*x); }

square

returns
int

int arg
x ret_stmt

expr (*)

x x
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What a type-check must do

Enter the function in a global symbol table

square

returns
int

int arg
x ret_stmt

expr (*)

x x

Global symbols
Name Type                    ...
Square function, int → int
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What a type-check must do

Create a local context (either in the global table, or make another)

int arg
x ret_stmt

expr (*)

x x

Global symbols
Name Type                    ...
Square function, int → intsquare

returns
int Square’s symbols

Name Type                    ...
x int
ret int

ret_stmt
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What a type-check must do

Check statements in the function body

ret_stmt

expr (*)

x x

Global symbols
Name Type                    ...
Square function, int → intsquare

returns
int Square’s symbols

Name Type                    ...
x int
ret int

int arg
x

(expect int here)

  ret : int                E : T   
  ret : int |- return E : void
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What a type-check must do

Check each part of each statement

expr (*)

x x

Global symbols
Name Type                    ...
Square function, int → intsquare

returns
int Square’s symbols

Name Type                    ...
x int
ret int

int arg
x ret_stmt

        
x : int

        
x : int

E1 : T        E2 : T
 E = E1 * E2 : T

____         _____
x : int         x : int
E1 : int        E2 : int
  E = E1 * E2 : int

(from the table)

(expr gives int)



  

18

What a type-check must do

Check each part of each statement

expr (*)

Global symbols
Name Type                    ...
Square function, int → intsquare

returns
int Square’s symbols

Name Type                    ...
x int
ret int

int arg
x ret_stmt

x x

(expected int)

(got one)

Hooray, ‘square’ is correctly typed

                   (proof on prev slide)
  ret : int                E : int   
  ret : int |- return E : void
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Three views on checking

• Implementation-wise, we traverse the syntax tree and enforce 
the rules of the type system

• If the rules allow us to do that simultaneously with discovering 
the syntax tree, it fits a syntax-directed translation scheme a la 
Dragon

i.e. graft checking into the semantic actions of the parser

• Written as inference rules, it is a construction of a proof tree 
which resolves a bunch of type judgments

• All the same thing, more or less
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What we’ve looked at is static

• All information about types and values comes straight from the 
source code
– That’s why we can do it by examining the syntax tree

– When the compiler is finished, so is the type checking

• It’s a process of binding
– Explicitly, as with “double z = 2.71828”    (declaration says it)

– Implicitly, as with “z = 3.141593”              (value gives it away)

and checking
– If z is consistently used as a double in the scope of this binding, the program is 

type-safe

• Type-safety is the lack of type errors when the program runs
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How safe is static checking?

• That depends on how it’s implemented.

• C lets you lie to the type checker, under the 
assumption that you have control

• That includes creating type errors at run time
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How safe is static checking?

• Java won’t have such shenanigans, and enforces 
more safety

• Both check statically, but according to different rules
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Dynamic types

• Other languages permit type information to appear at run 
time, and check it then
– Scheme, Ruby, Python

• These are interpreted, but nothing prevents a compiler from 
inserting dynamic type checks into the program it generates

• Some even give you static types when you declare 
variables, and dynamic when you don’t
– Dylan pioneered this in 1995
– C# does it today
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The strength of a type system

• Strongly typed languages guarantee that programs 
are type-safe if they pass checking

• Weakly typed languages admit programs that contain 
type errors

• A sound type system statically ensures that all 
programs are type-safe

(Sound as in soundness, it doesn’t make any noise)
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Strength is a design trade-off
• A program may be safe for reasons a compiler cannot 

detect:

• This won’t fail, but it doesn’t type-check without 
forced casting either



  

26

These words are not absolutes
• We saw that static checks in Java are less permissive than those in C

– Taken as a whole, Java types also have a dynamic twist to them

– Objects remember what type they are at run time, that’s why you can get 
ClassCastExceptions instead of wrong answers

• Python does all its checking dynamically, and is pretty firm about 
consistency (stronger)

>>> a = 42

>>> b = “42”

>>> print a == b              # No number is a string

False

• PHP also works dynamically, but has a more liberal philosophy (weaker)
php > $a = 42;

php > $b = “42”;

php > var_dump ( $a == $b ); # Sure, why not?

bool(true)
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Pros and cons of static types

(+) Speeeeeeeed…
Dynamic checking runs whenever the program does, and takes time

(+) Evergreen analysis
– Generated result does the same thing every time it runs

– Dynamic types admit dynamic type errors

(-) Has to be conservative
– Can’t defer check until values are known, must assume they can be 

anything
– Stronger checking translates into accepting fewer programs
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Next up

More elaborate, derived types
– Arrays
– Records
– Objects
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