

1

Register allocation

TDT4205 – Lecture 31

2

Variables vs. registers

• TAC has any number of variables

• Assembly code has to deal with memory and
registers

• Compiler back end must decide how to juggle the
contents of the memory and registers to fit every
variable as necessary

3

Straightforward solution

• We know how to do this, just
– Put everything in the activation record
– For each instruction, shuttle variables into registers
– Combine registers
– Put variables back into activation record

• That’s fine and dandy, but it creates
– Redundant copy instructions
– Constant memory traffic

4

Register allocation

• Goal: keep variables in registers as long as possible

• In the best of cases, a variable can be in a register
througout its lifetime

• If it can’t, it’ll need a place in the activation record

5

What can go in registers?

• That depends on the number of registers

• It also depends on how variables are being used
(You can’t make a pointer to a register)

• Main idea:

Two variables can’t share the same register if they
are live simultaneously

6

The basic approach

• Do live variable analysis

• Go through the sets of live variables

• When two variables appear in the same set, they
interfere
– Conversely, when two variables don’t interfere, their live ranges are

disjoint
– Pairs like that can share the same register, because they won’t

need it at the same time

7

Interference graphs

• An interference graph is a graph where
– every variable is a node
– edges connect interfering variables

as in this one:
{a}

b = a + 2
{a, b}

c = b * b
{c,a}

b = c + 1
{b,a}

return b*a
{}

a

b c

8

Graph coloring

• If every register has a color, a register assignment of
the interference graph is a mapping where no two
neighbors have the same color

a

b c

RAX
RBX

9

Um… “colors”?

• Graph “coloring” is one of the classic problems of
computer science

• If we have k registers, the question of whether each
variable can have one is the same as whether the
interference graph is k-colorable

• K-colorability is an NP complete problem, finding an
optimal solution takes exponential time

(as far as we know today)

• We can still approximate it with an imperfect heuristic

10

Practical k-coloring

• Simplify the graph
– Find a node with at most k-1 edges
– Remove it from the graph, put it on a stack
– Repeat until simplified graph is trivially k-colorable

(or, until there are no nodes left, if you prefer)

• Reintroduce the nodes
– Add nodes back (in reverse order of the simplification)
– Color them with colors that they don’t interfere with
– Hope that total number of colors is k or smaller

11

Sometimes it works

• Is this graph 3-colorable?

a b

cd

a

cd

b

cd

b
a

d

b
a
c

d

b
a
c

cd

b
a

a

cd

b

a b

cd

(simplify)

(reconstruct)

12

Sometimes it doesn’t

• If the graph can’t be colored, it’ll find a form where
every node has k or more neighbors

(otherwise, there’d be a color to spare for them)

• K or more neighbors doesn’t imply uncolorability

3 neighbors
spent all 3 colors

?

13

Spilling

• When all nodes have k or more neighbors, pick one
and mark it for spilling

(a place in the activation record)

• Remove from graph, push on stack

• Aim for little-used nodes

14

Access to spilled variables

• Some additional instructions will be needed to move
spilled variables back and forth to the activation
record

• Simple: keep a few extra registers for shuttling data
in the load-modify-store way

• Better: rewrite low-IR code with new temporary, redo
liveness and register allocation

15

Precolored nodes

• Some variables need designated registers
(e.g. “return value goes in RAX”)

• Treat their temporaries as special, and set their
colors in the interference graph

• Simplification: Never remove pre-colored nodes
(They don’t need to be reintroduced to get a color anyway)

• Coloring: Use the pre-colored nodes as starting point
when reintroducing the rest

16

Big picture of code generation

• Start from low-level IR
• Build DAG of the computation

– Global variables = static addresses
– Arguments taken from frame pointer
– Assume all locals and temporaries in (infinite number of) registers

• Tile the DAG, obtaining abstract assembly
• Allocate registers

– Liveness analysis of abstract assembly
– Assign registers and generate assembly

17

The whole process

Characters

Tokens

Statements

High-level IR

Low-level IR

Instructions

Assembly

(binary)

(scanner)

(parser)

optimize

optimize

(trees, CFGs)

(TAC or similar)

(instr.
selection,
register alloc.)

18

The final sessions

• At the end, we’ll revisit all those topics, and speed-
review key elements of the techniques we’ve covered

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

