NTNU - Trondheim
Norwegian University of

Science and Technology

Control flow and loop detection

LY
www.ntnu.edu e TDT4205 — Lecture 29

A}




Where we are

* We have a handful of different analysis instances
* None of them are optimizations, in and of themselves

* The objective now is to

— Show how loop detection is a simple instance of the same ideas

— Suggest how a combination of different analysis results enable a
loop optimization (loop-invariant code motion)

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥



Detecting loops

* It's easy to detect loops at the syntactic level

— Unless there are free-form jump instructions in the language, loops
are explicitly written in the source code

* It's not as easy to detect loops at lower levels
— Low-level code has only jump instructions

— General control flow graphs have only edges
* Language-independent optimizations need to
elucidate loops implicit in the control flow

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥



Control flow analysis

In a Control Flow Graph,

* Aloop is a set of blocks that should be grouped
together

* There is a loop header every control flow that enters
the loop must go through

* There is a back edge from one of the blocks that
leads back to the header

header
bod
Y @) i,
body hd Teehn ]é,

body *




Dominator relation

* |ntroduce the idea that a node X dominates a node Y
if every path to Y must go through X

* Every node dominates itself o
* 1 dominates 1,2,3,4 1

* Neither 2 nor 3 dominate 4 / \
(There are paths to 4 which bypass them) \ /

NTNU - Trondheim
Norwegian University of
Science and Technology
\
www.ntnu.edu ¥



Immediate dominators

* The first node in a CFG dominates all the other ones
— That’s not so useful to know

* If both Aand B dominate C, then either

A dominates B, or
B dominates A

* A strictly dominates B if they’re separate (A = B)

* The immediate dominator of a node n is the last strict
dominator on any path to n

— There can only be one
— If there were multiple last strict dominators, they would not be dominators

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥



Dominator tree

* Dominators form a hierarchy, so we can represent them

as a tree
— The root is the entry node
— Children attach to their immediate dominator

1 1
\
3 4 3 4 5 7

NTNU - Trondheim
Norwegian University of

Science and Technology

9
Y
6




Control flow as a set of things

This can be seen as a data flow problem:
* dom(n) = set of nodes that dominate n
* dom(n) =N {dom(m)| m € pred(n) } U {n}

* Thatis:

dominators of n are the dominators of n-s predecessors, as well as
n itself

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥



Control flow as a DF problem

Collecting sets of CFG nodes as the problem domain,
we have the makings of another framework instance:

* out[B]=in[B]UB
* in[B]=N{out[B]| B’ € pred(B) }

* Transfer function is
— Monotonic
— Distributive
— Practically trivial, all it represents is a collection of predecessors

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥



Natural loops

* A back edge is an edge where a node has a successor which
dominates it

* Anatural loop has a back edge n—h such that
— his the loop header
— nodes that can reach n without going through h are the loop body

* To detect natural loops
— Compute the dominator relation
— Find back edges (use the dominator relation)
— Find the loop body (predecessors of n that are dominated by h)
* Starting with a back edge from n, traverse its predecessors until
reaching h

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥



Combine loops with shared header

* Unstructured jumps, one can make multiple loops

with the same header

L1

* These can be combined

>

L1

h

-

L2

L2

* This leaves only disjoint and nested loops

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥



Preheader insertion

* If an optimization needs to add code before the
header, insert another basic block

\, / N/

h >
h

L1 L2

L1 L2

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥




...and now, an application
(finally!)

* Optimizations can combine the results of several analyses

* Loop invariant code motion aims to find statements that
produce the same result in every iteration, and move it
outside of the loop

for (i=0; i<n; i++)
buffer[i] = 10*i + x*x;
might as well be
tmp = x*x
for (i=0; i<n; i++)
bufferfi] = 10*i + tmp;

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥



ldentifying invariant code

* An instruction a = b OP c is loop-invariant if
— b and c are constants, or
— all definitions of b and ¢ are outside the loop, or
— b and c are defined once, and their defs are loop-invariant

* The invariant property for an instruction can be
derived from

— Finding that it’s inside a loop (using the dominator relation)
— Finding the definitions that reach it (using reaching defs)

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥



Moving invariant code

* Introduce a pre-header and move a = b OP c there if

— The definition a = b OP ¢ dominates every loop exit where a is live
* Search nodes dominated by this one, consult live variables

— There is no other definition of a in the loop
* Consult dominators for loop body, scan them for definitions of a

— Every use of a in the loop can only be reached by this def.

* Consult reaching definitions at every use of a, to see if there are others
than this one which can influence it

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥



	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

