

1

Control flow and loop detection

TDT4205 – Lecture 29

2

Where we are

• We have a handful of different analysis instances

• None of them are optimizations, in and of themselves

• The objective now is to
– Show how loop detection is a simple instance of the same ideas

– Suggest how a combination of different analysis results enable a
loop optimization (loop-invariant code motion)

3

Detecting loops

• It’s easy to detect loops at the syntactic level
– Unless there are free-form jump instructions in the language, loops

are explicitly written in the source code

• It’s not as easy to detect loops at lower levels
– Low-level code has only jump instructions

– General control flow graphs have only edges

• Language-independent optimizations need to
elucidate loops implicit in the control flow

4

Control flow analysis

In a Control Flow Graph,

• A loop is a set of blocks that should be grouped
together

• There is a loop header every control flow that enters
the loop must go through

• There is a back edge from one of the blocks that
leads back to the header

header

body

body body

body

5

Dominator relation

• Introduce the idea that a node X dominates a node Y
if every path to Y must go through X

• Every node dominates itself

• 1 dominates 1,2,3,4

• Neither 2 nor 3 dominate 4
(There are paths to 4 which bypass them)

1

2 3

4

6

Immediate dominators

• The first node in a CFG dominates all the other ones
– That’s not so useful to know

• If both A and B dominate C, then either
A dominates B, or

B dominates A

• A strictly dominates B if they’re separate (A != B)
• The immediate dominator of a node n is the last strict

dominator on any path to n
– There can only be one
– If there were multiple last strict dominators, they would not be dominators

7

Dominator tree

• Dominators form a hierarchy, so we can represent them
as a tree
– The root is the entry node

– Children attach to their immediate dominator

1

2

3 4

5

6

1

2

3 4 5

6

7

7

8

Control flow as a set of things

This can be seen as a data flow problem:

• dom(n) = set of nodes that dominate n

• dom(n) = ∩ { dom(m) | m pred(n) } {n}∊ ∪

• That is:
dominators of n are the dominators of n-s predecessors, as well as
n itself

9

Control flow as a DF problem

Collecting sets of CFG nodes as the problem domain,
we have the makings of another framework instance:

• out[B] = in[B] U B

• in[B] = ∩ { out[B’] | B’ ∊ pred(B) }

• Transfer function is
– Monotonic

– Distributive

– Practically trivial, all it represents is a collection of predecessors

10

Natural loops

• A back edge is an edge where a node has a successor which
dominates it

• A natural loop has a back edge n→h such that
– h is the loop header
– nodes that can reach n without going through h are the loop body

• To detect natural loops
– Compute the dominator relation

– Find back edges (use the dominator relation)

– Find the loop body (predecessors of n that are dominated by h)

• Starting with a back edge from n, traverse its predecessors until
reaching h

11

Combine loops with shared header
• Unstructured jumps, one can make multiple loops

with the same header

• These can be combined

• This leaves only disjoint and nested loops

h

L1 L2

h

L1 L2

12

Preheader insertion

• If an optimization needs to add code before the
header, insert another basic block

h

L1 L2

h

L1 L2

13

...and now, an application
(finally!)
• Optimizations can combine the results of several analyses

• Loop invariant code motion aims to find statements that
produce the same result in every iteration, and move it
outside of the loop

for (i=0; i<n; i++)
buffer[i] = 10*i + x*x;

might as well be
tmp = x*x

for (i=0; i<n; i++)
buffer[i] = 10*i + tmp;

14

Identifying invariant code

• An instruction a = b OP c is loop-invariant if
– b and c are constants, or
– all definitions of b and c are outside the loop, or
– b and c are defined once, and their defs are loop-invariant

• The invariant property for an instruction can be
derived from
– Finding that it’s inside a loop (using the dominator relation)

– Finding the definitions that reach it (using reaching defs)

15

Moving invariant code

• Introduce a pre-header and move a = b OP c there if
– The definition a = b OP c dominates every loop exit where a is live

• Search nodes dominated by this one, consult live variables

– There is no other definition of a in the loop
• Consult dominators for loop body, scan them for definitions of a

– Every use of a in the loop can only be reached by this def.
• Consult reaching definitions at every use of a, to see if there are others

than this one which can influence it

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

