

1

Live Variables

TDT4205 – Lecture 24

2

Where we were

• Control flow graphs represent the computation and
control flow of a program

• Nodes are basic blocks, representing the
computation

• Arcs represent the control flow between basic blocks

• CFGs can be built from high or low level IR

3

Uses of CFG representation

• The purpose is to statically extract information about
the program at compile time

• Reasoning about the run-time values of variables and
expressions in every possible execution enables
optimizations

• We can illustrate this by finding live variables

4

Liveness

• A live variable is one which holds a value that may still
be used at a later point

• Conversely, a dead variable is guaranteed to see no
further use (until its next assignment)

• This means we’re searching for ranges of instructions in
the program where variables hold values that matter to
the execution

• In order to find ranges of instructions, we need to define
program points the ranges can span across

5

Program points

• As we want to capture how state is changed through an
instruction, we need to talk about the state before and the
state after, and describe the difference

• Hence, there is one program point before and one after each
instruction

• For basic blocks, they’re the points
– After the prececessor(s)

– Before the successor(s)

a = b+1

Point before

Point after

6

Program points in the example
we saw before

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

These are all
the points

7

The two things to mind

• How does an instruction affect the state at the points
immediately before and after it?

In other words, what is the effect of an instruction?

• How does state propagate between program points?
In other words, what is the effect of control flow?

• If we can tell which variables are live at one point, we
can compute which ones are live by its neighbors

8

Which instructions affect
liveness?
• If a variable is used in an expression, it must be kept

at the preceding program point:

• If a variable is defined by an expression, it was dead
at the preceding program point

a = b+1

b must be live here, we
need it in a moment

a = b+1

a will not be used again here,
the next thing we do is redefine
it

9

Systematizing it a little

• For an instruction I, define two sets of variables
in[I] = set of live variables at point before I

out[I] = set of live variables at point after I

• This extends naturally to basic blocks
in[B] = set of live variables at point before B

out[B] = set of live variables at point after B

...so if I1 and I2 are the first and last instructions in B,
in[B] = in[I1]

out[B] = out[I2]

10

Before & after vs. instructions

• All variables used by an instruction must be live
before it can use them

• Variables defined by an instruction are not live at the
last point before the instruction

• That is,
live before = live after – defined vars + used vars

or
in[I] = out[I] – def(I) + use(I)

11

Before & after vs. control flow

• All variables used along the path of any successor
must be live after the predecessor
– You never know which path will be taken, one of them might need it

• Where control flows split,
live after = live before successor #1 + live before successor #2 +…

or
out[I] = in[I1] + in[I2]

where I1, I2 are successors of I

12

Liveness flows backwards

• As you may notice, we’re defining the in-sets in terms
of the out-sets

• This means we need out-sets to start working with

• In the name of safety, assume that every variable is
live until it has been determined otherwise

• This gives us a final out-state to start working from,
so that we can examine the CFG in reverse

13

Start from the back

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

Conservative assumption: everything is live at the end

14

Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

Last statement defines z

15

Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

Predecessor doesn’t define anything

16

Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

Predecessor defines z, but it wasn’t live anyway

17

Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

Predecessor uses z, it is live again

18

Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

Predecessor of two successors (control flow):
must assume union of the live variables of each succ.

19

Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}

Definition of y

20

Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Use of y, definition of x

21

End of iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

We’ve covered all points, but something changed -
Repeat from the start...

22

Iteration 2

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

The union of the two successors here is different

23

Iteration 2

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}

{c,d,x,y,z}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Propagate it to predecessor

24

Iteration 2

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

...and again, until we’ve been through all nodes…
(then repeat, because something changed)

25

Iteration 3

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Nothing changes, we have reached a fixed point

26

Between the lines

• Every instruction implies a constraint equation
– Live before = live after – what it defines + what it uses

• Everywhere control flows join, there is another constraint equation
– Live after = sum of what’s live at all successors

• The framework for data flow analysis is just different instances of
this pattern
– Different constraint equations capture different information

– Different split/join behavior follows from the type of information
– May work forward or backward (liveness propagates backwards)

• We’ll look at a handful of instances

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

