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Live Variables

TDT4205 – Lecture 24
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Where we were

• Control flow graphs represent the computation and 
control flow of a program

• Nodes are basic blocks, representing the 
computation

• Arcs represent the control flow between basic blocks

• CFGs can be built from high or low level IR
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Uses of CFG representation

• The purpose is to statically extract information about 
the program at compile time

• Reasoning about the run-time values of variables and 
expressions in every possible execution enables 
optimizations

• We can illustrate this by finding live variables
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Liveness

• A live variable is one which holds a value that may still 
be used at a later point

• Conversely, a dead variable is guaranteed to see no 
further use (until its next assignment)

• This means we’re searching for ranges of instructions in 
the program where variables hold values that matter to 
the execution

• In order to find ranges of instructions, we need to define 
program points the ranges can span across
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Program points

• As we want to capture how state is changed through an 
instruction, we need to talk about the state before and the 
state after, and describe the difference

• Hence, there is one program point before and one after each 
instruction

• For basic blocks, they’re the points
– After the prececessor(s)

– Before the successor(s)

a = b+1

Point before

Point after
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Program points in the example 
we saw before

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x

These are all
the points
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The two things to mind

• How does an instruction affect the state at the points 
immediately before and after it?

In other words, what is the effect of an instruction?

• How does state propagate between program points?
In other words, what is the effect of control flow?

• If we can tell which variables are live at one point, we 
can compute which ones are live by its neighbors
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Which instructions affect 
liveness?
• If a variable is used in an expression, it must be kept 

at the preceding program point:

• If a variable is defined by an expression, it was dead 
at the preceding program point

a = b+1

b must be live here, we
need it in a moment

a = b+1

a will not be used again here,
the next thing we do is redefine
it
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Systematizing it a little

• For an instruction I, define two sets of variables
in[I] = set of live variables at point before I

out[I] = set of live variables at point after I

• This extends naturally to basic blocks
in[B] = set of live variables at point before B

out[B] = set of live variables at point after B

...so if I1 and I2 are the first and last instructions in B,
in[B] = in[I1]

out[B] = out[I2]
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Before & after vs. instructions

• All variables used by an instruction must be live 
before it can use them

• Variables defined by an instruction are not live at the 
last point before the instruction

• That is,
live before = live after – defined vars + used vars

or
in[I] = out[I] – def(I) + use(I)
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Before & after vs. control flow

• All variables used along the path of any successor 
must be live after the predecessor
– You never know which path will be taken, one of them might need it

• Where control flows split,
live after = live before successor #1 + live before successor #2 +…

or
out[I] = in[I1] + in[I2]

where I1, I2 are successors of I
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Liveness flows backwards

• As you may notice, we’re defining the in-sets in terms 
of the out-sets

• This means we need out-sets to start working with

• In the name of safety, assume that every variable is 
live until it has been determined otherwise

• This gives us a final out-state to start working from, 
so that we can examine the CFG in reverse
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Start from the back

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

Conservative assumption: everything is live at the end
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Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

Last statement defines z
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Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

Predecessor doesn’t define anything
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Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

Predecessor defines z, but it wasn’t live anyway
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Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

Predecessor uses z, it is live again
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Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

Predecessor of two successors (control flow):
must assume union of the live variables of each succ.
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Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}

Definition of y
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Iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Use of y, definition of x
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End of iteration 1

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

We’ve covered all points, but something changed -
Repeat from the start...
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Iteration 2

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

The union of the two successors here is different
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Iteration 2

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}

{c,d,x,y,z}

{c,d,x,y}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Propagate it to predecessor
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Iteration 2

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

...and again, until we’ve been through all nodes…
(then repeat, because something changed)
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Iteration 3

x=y+1
y=2*z
if(d)

z=1

if(c)

x=y+z

z=x {c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,y}
{c,d,x,y}

{c,d,y,z}

{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Nothing changes, we have reached a fixed point
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Between the lines

• Every instruction implies a constraint equation
– Live before = live after – what it defines + what it uses

• Everywhere control flows join, there is another constraint equation
– Live after = sum of what’s live at all successors

• The framework for data flow analysis is just different instances of 
this pattern
– Different constraint equations capture different information

– Different split/join behavior follows from the type of information
– May work forward or backward (liveness propagates backwards)

• We’ll look at a handful of instances
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