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X86_64 Assembly language

TDT4205 – Lectures 20, 21
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Assembly: Yet Another
Programming Language?
• From the hallowed pages of the Merriam-Webster Online 

Dictionary:
– “Compile”:

• To compose out of materials from other documents

• To collect and edit into a volume

• To build up gradually
• To run (as a program) through a compiler

– “Assemble”:
• To bring together (as in a particular place or for a particular purpose)

• To fit together the parts of

– The Compiler edits things, discovers, synthesizes language information
– The Assembler substitutes text for numbers

• Corollary: The Assembler is dumb as a brickTM

• Let us stop here
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Names for things

• 'x86' is generally bandied about to talk about
– A line of processor families
– The instructions they support
– The common design of systems they are often found inside

• IA-32 was a little more specific
– That's a specification of a bunch of binary sequences, and what 

they (ostensibly) do to a slab of transistors

– It's an Instruction Set Architecture (ISA), complete with symbolic 
names for all the binary sequences

– Technically, an assembler could use different names, but there is no 
point in renaming the entire instruction set when it already has 
perfectly good ones
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So, IA-32 begat IA-64, then?
• Well, kind of.

• IA-32 was backwards compatible right back to the pleistocene era, 
so it retained many Very Interesting design decisions

• IA-64 struck a blow for elegance, throwing legacy to the wind.

• This gave us the Itanium and Itanium2 processors, with
– Remarkable throughput
– Remarkably delayed design and production
– Remarkable price tags
– Remarkably few customers

• They have found niches in the server market, three people eagerly 
await the revolution.

• We don't like to talk about it.
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In the meantime

• While IA-xx was busy reinventing itself, the commercial 
value of corny legacy design was recognized elsewhere, 
spawning a 64-bit architecture initially called “Hammer”.

• If you have a “regular PC” (or Mac) these days, it's most 
likely a descendant of that design, which is colloquially 
called 'x86_64', in order not to hurt any feelings.

• If you look a little closer, some people also call it 'amd64', 
which gives away what kind of feelings we're not hurting.

• We don't like to talk about that either.
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Why the name salad?

• By now, That Company have regained enough of an edge to 
decide what ISA extensions should look like again, and taken the 
opportunity to re-re-baptize the whole enchilada as “Intel® 64”

• I'm not going to say “Intel® 64” very often, the ® is hard to 
pronounce
– So x86_64 it is, even though that may also refer to chips, systems
– We only need to talk about the ISA, so it'll be ok

• I'm mentioning all this for reference, you may come across any 
and all of these names in different places
– At least it will suffice until the next one is called “Frankenstein  128” or something 

like that
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Is this really useful?

...well, apart from in compiler construction?
• Courses you have been through may have indicated that

– Compilers produce better low-level code than humans
– Assembly code is hard to write and maintain
– Executable code isn't human readable
– et cetera

• There is enough truth in this to say it, but still:
– Compilers must adhere to language semantics, humans can see shortcuts 

compilers can not take
– Assembly code can interface with other languages, and be inserted where it counts 

(keeping it short and semi-readable)
– Executable code is simple, just very tedious to deal with
– et cetera
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Hence, the motivation

• Picking up a smattering of assembly is good for
– Knowing roughly how your code in any language ends up
– Being able to insert it by hand on special occasions
– Writing specialized code generators for particular problems
– Finding it out when a compiler you use has a bug
– Succeeding at job interviews which ask about it (yes, actually)
– Unifying theories of quantum mechanics and gravity
– Recovering lost socks from the washing machine

• Even if you never write another compiler, this is a useful takeaway
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Once more
• A process! (Figure pinched from McCusick&Neville-Neil, 2005)

In memory

On disk
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The actions of the loader
(in principle)

Memory

CPU

Load “myprog”O/S
Open file

Can I have blocks 6, 7, 8, please?

Disk
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The actions of the loader
(in principle)

Memory

CPU

Load “myprog”O/S

Disk

6
7

8

Here...

...you...
...go...
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The actions of the loader
(in principle)

Memory

CPU

Resume
over there → O/S

Disk

6 7 8

Done!

Ok 

Program ready
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The actions of the loader
(in principle)

Memory

CPU

O/S

Disk

6 7 8

Program running... 

● This is grossly oversimplified
● Still, the executable file is just loaded into a memory 

range, and expanded according to its contents

● The file must contain the recipe for the process image
● Assembly code must contain the

recipe for the file
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The main parts

• The 2 parts which map directly are the data and text segments of the file

• Where they begin and end is directly evident in the code:
.section .data ← This opens the data section

.section .text ← This opens the… oh, I’m sure you can read

• The data section contains data (wow!) that can be
– specified raw (if necessary), or

– translated from friendly directives like “.string”, which saves you from looking up ASCII table 
values and such.

• The text section is filled with instructions generated from symbolic 
names for operations that the CPU supports
– This saves you from looking up op-code table values, hand-calculating how many bytes 

apart things are stored, and a few other tasks that are as exciting as reading a telephone 
directory.
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Naming locations

• It is convenient to be able to talk about locations in the file 
by symbolic names, instead of counting bytes

• The alternative is to re-calculate all subsequent addresses 
every time you insert something. If you tried it, programming 
with line numbers is a gentle cousin to this type of pain.

• If you start a line with, e.g.

farfegnugen:

the assembler will treat this label as an integer, but 
calculate wherever-it-is for you.
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A pointer to a string

.section .data

hello: .string “Hello, there!\n”

• Even though it doesn’t contain a program, this code 
already employs the assembler for several tasks:
– Defining a data segment
– Turning “Hello, there!\n” into the array [ 72, 101, 108, …
– Tracking how many bytes came before it, and calling this offset 

‘hello’ throughout the rest of this assembly
– This should explain why we want a table of all strings in PS4



  

17

Memory is hierarchical
• Before dissecting instructions, we must know what they do.

– They manipulate memory.
– That’s it, really.

• Memory design is a trade-off between size, speed, power usage, production 
process, and a bunch of other things you can learn about elsewhere.

• Small is fast and expensive, big is slow and cheap.

• There are successively bigger/slower levels:
– Registers
– 1,2,3 levels of cache memory

– DRAM memory

– Swap file on disk

• When programming, we only see registers and “memory”, but the same 
address can be housed in any of these parts

• For computationally demanding programs, the way they use memory 
determines how fast they run, so the Dragon mentions it.
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The registers

• There are 8 “general purpose” registers inherited and 
extended from IA-32:

– RAX (Result accumulator)

– RBX (Array base pointer)

– RCX (Counter)

– RDX (Data destination pointer)

– RSI (String op. Source)                   ←    Yes, 2 in 8 are mildly text related

– RDI (String op. Destination) ←     I am not making this up

– RSP (Stack pointer)

– RBP (Frame pointer)

(All have special roles for certain instructions, so the generality of their purpose is 
disputable, but they are still called that.)

• There are even less general ones with dedicated instructions

• There are really more than 8, but those are managed transparently,      
programs use only these 8 names
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The registers, pt. II

• There is also
– R8

– R9
– R10

– …

– R15

• Coupled with the previous 8, this makes an oddly half-
consistent naming scheme.

• Presumably, the designers ran out of fancy side effects.
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The rest of memory

• The style of the specification takes a cue from CISC (Complex Instruction Set 
Computers), providing hundreds of operations that do all sorts of useful things.

(One highlight of convenience is the RSQRTPS instruction, which computes 4 reciprocal square roots in 
parallel…)

• This is legacy, complex things are reduced to sequences of more economical micro-
operations for the execution core, but we don't get to see it.

• As part of that legacy, it's not an explicit load/store design – memory is accessed by 
each instruction supporting a large set of addressing modes instead:
– Register (straight-up number value)

– Register indirect (value in memory, pointer in register)

– Register indirect + offset (same, offset by constant)

– (Instruction-pointer relative, which I won't talk about)

• Main memory can be either source or destination, but only one at a time
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Moving data

• This is the most basic of operations, and makes good

examples of addressing modes:
• movq $3, %rax /* Copy constant 3 to RAX */

• movq %rax, %rbx /* Copy contents of RAX to RBX */

• movq %rax, (%rsp) /* Copy contents of RAX to addr. RSP */

• movq 8(%rbp), %rbx /* Copy contents of adr RBP+8 to RBX */
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Why movQ?

• q means address as 'quadword', which is 64 bits (8 bytes)

• l would be 'longword' (32 bits / 4 bytes)

• w is 'word' (16 bits / 2 bytes )

• b is 'byte' (8 bits / 1 byte)

• This is an artifact of AT&T assembler syntax, not of the 
instruction set

• Therefore, you won't see them in the processor manual, but it 
doesn't take a lot of imagination to add them

• We'll only work in quadwords, just add 'q', and you'll do fine
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Add, subtract, increment,
decrement
• addq op1, op2

adds numbers together in 2nd op. Addressing modes as per the 
move instruction

• subq op1, op2

wins no awards for subtlety, it subtracts op1 from op2

• incq op1

is a simple increment

• decq op1

is the matching decrement
(Bonus points: how would you translate a=b++ and a=++b, respectively?)
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Integer multiply

• That should be a natural continuation: mulq op1,op2 right?
• I wish.
• There are a few variations available, but all suffer from the

same issue: the product of two quadwords can be

disturbingly much larger than a quadword

• Therefore, this instruction employs seriously funky mojo by

using RAX and RDX together, with high-order bits in RDX and 
low-order ones in RAX

• This is denoted RDX:RAX
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Integer multiply

• A reasonably humane way to get the integer multiply

to work, is to
– Load RAX with one of the operands

– Extend it to RDX:RAX

– Use the instruction format 'imulq op1' which takes RDX:RAX as its

other operand implicitly, and stores the result there as well
– Use RAX as the result, merrily assuming that it didn't overflow
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“Extend RAX”?

• Yes – integers are stored in 2-s complement, so

negatives are a little funny

• That is, you find a negative number by flipping all the

bits of the positive number, and adding 1
– 00000001 is 1, so

– 111111111 is -1

• For brevity, pretend that RDX, RAX are 8-bit registers

that extend to 16:

00000000 00000001

11111111

00000000 11111111

“1” (16-bit)

“-1” (8-bit)

“255” (16-bit)
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Extending RAX to RDX:RAX

• The contents of RDX when used as high-order bits should 
depend on the sign of RAX, but it won't know just because 
you have a number in RAX

• Just zeroing it isn't going to deal with negative numbers

• We could compare RAX to 0 and set RDX accordingly, but 
it's a hassle

• The 'cqo' instruction takes no operands, but does precisely 
this sign-dependent extension in one go

(and obviously knocks out any RDX value doing it)



  

28

Integer division

• The 'idivq' instruction works in the same way, that is,

“divide RDX:RAX by op1”
• The answer won't overflow, though
• Instead, what we get is

– RAX contains the quotient (nearest smaller integer multiple)
– RDX contains the remainder

when it completes
(Except for div. by 0, which raises an exception for obvious reasons)
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Arithmetic shift

• A similar split applies to high/low bytes of old register 
names
– “There are odd limitations accessing the byte registers due to coding 

issues in the REX opcode prefix used for the new registers”
(Intel’s own words, Chris Lomont)

• Shift values don’t need high values
– 64 is the length of a register

– A byte of shift value will do

• sarq %cl, %rax ← shift RAX right by byte-value in RCX

• salq %cl, %rax ← shift RAX left by byte-value in RCX
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Pushing and popping

• pushq op1
– Subtracts 8 from RSP register (q is 8 bytes)
– Writes op1 into the resulting address (%rsp)
– You can do this yourself, but it's nice to have an instruction

• popq op1
– Writes (%rsp) into op1
– Adds 8 to the RSP register
– You can do this too, but it's nice to have an instruction
– If you no longer care for the contents of the stack, it's easier to just add to

the RSP register
– addq $24, %rsp will take out top 3 quadwords on stack
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Calling functions

• A function call goes something like
– Caller pushes any values it wants to keep

– Caller arranges parameters
– 'call <label>' implicitly pushes return address, i.e. where the instruction pointer 

should come back on return
– Callee starts by pushing contents of RBP right after return address

– Callee sets its own RBP to the contents of the RSP
– Callee runs, putting result in RAX

– Callee restores RSP to its RBP (which points at caller RBP)
– 'ret' instruction implicitly pops return address into instruction counter

– Caller's execution is restored, can now recover register values and result of call 
in RAX
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Eccentricities of the call
convention
• Where IA-32 demanded all arguments on stack,

x86_64 expects the first few arguments in designated

registers, before they start spilling onto stack
• We'll only need the convention for integers:

– First 6 arguments go in RDI, RSI, RDX, RCX, r8, r9
– Any further arguments should be pushed on stack

• Remember order reversal (think of printf)

• System calls require 128-bit / 16-byte stack alignment
– Mind this if you’ve pushed an odd number of quadwords
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Control flow

• jmp <label> is an unconditional jump to the address computed 
from your label

• cmpq op1, op2 compares the 2 ops, and sets a special status 
register to reflect the outcome

• j[cc] <label> conditionally jumps based on the contents of that

register, and typically follows the comparison instruction. [cc] can 
be many things:
– jne is jump-non-equal

– jge is jump on greater-or-equal

– jz, jnz is jump on equal to zero, non-equal-to-zero

– et cetera, et cetera
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Constants

• Constants are prefixed with $

• That is what says “treat this as a constant”
– It's not needed when an address is expected by the operation, such

as with call, jump, and friends

– It IS needed when addresses are treated as data: if you want to

push the address of labelled data element 'hello', the instruction is

pushq $hello
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Exporting labels

• Labels which should be visible in the object code are declared 
initially with directive

.globl <label>

• This makes symbols visible to C and friends

• If we export 'main', the C compiler back end will mistake our 
assembly from the result of a C program, set up execution to start 
there, and link in the C standard lib. to play with.

• Things can be done more generally, but this is easy

• Corollaries:
– Global variables and functions translate to labels which are exported
– Static declarations translate to labels which are not exported
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A complete example
.globl main

.section .data

hello:

    .string "Hello, world! %ld\n"

.section .text

main:

    pushq %rbp

    movq %rsp, %rbp

    movq $42, %rsi

    movq $hello,%rdi

    call printf

    leave

    ret

This will assemble and link, just put it in a 
file with the .s suffix and send to gcc, it will 
know what to do
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There is much much more

...but this is pretty much what we will need

• Manuals can be found at
https://software.intel.com/en-us/articles/intel-sdm

instruction set reference is volumes 2A-2D

• Hopefully, hello world is a decent starting point for experiments

• Complete instruction/processor reference manuals are free for 
download at the link

• They’re a bit long and boring to read, but work OK for a reference

https://software.intel.com/en-us/articles/intel-sdm
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