NTNU - Trondheim
Norwegian University of

Science and Technology

(Simple) Objects

LY
www.ntnu.edu e TDT4205 — Lecture 19

A}

\Where we were

* Last time, we looked at the details of function call
mechanisms

* Object types require some extension to this, but we
can cover the basics by taking a quick look at it

* That is today’s topic

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥

Process address space
(again...)

Assembly program /
contains a straight-
forward recipe for
how to lay out this

file A
\1 Heap

OS loader
expands file to
Image every time
program is run

Stack
v

Data Data
Text Text
>
Executable file Run-time O i
Science and Technology

ion diski memori imaﬂe

Code generation for functions

* Functions become labels for addresses where the

subsequent instructions accept the arguments
(laid out as a stack frame matching the function’s activation record)

Text segment
_factorial:
(setup stackframe)
(copy arg. 1)
(compute)
(remove stackframe)
(return result)
_other_function:
(all that stuff)
(return)
_one_more_function:
(same story)
(return)

We looked at the operations
that go into these steps
last time

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥

Code generation for function calls

« Static function calls have unique names and type
signatures, compiler can just push arguments in turn
and insert call operation

Text segment

_factorial: -
(setup stackframe) This location is mapped from a
ety symbolic name into a target for
(remove stackframe) the program counter:
(return result) 1) Assembler substitutes name with symbolic adr.

2) Linker resolves adr. relative to text segment start

_main: 3) Loader maps it to actual address, visible to OS
push 3 NTNU - Trondheim
call _factorial B Neiabou it

\
www.ntnu.edu ¥

The need for run-time dispatch

interface Point { int getx(); int gety(); float norm(); }
class ColoredPoint implements Point {
float norm() { return sqrt(x*x+y*y); } ...
}
class 3DPoint implements Point {
float norm() { return sqrt(x*x+y*y+z*z); }

Y
Which of these to call...

Point p;
if (cond) p = new ColoredPoint();
else p = new 3DPoint();

float n = p.norm(); =

...Is only known at run time

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Method calls need indirection

* Even if we
generate methods
for each variant,
the destination of
a call can’t be
resolved once
and for all...

s

Text segment
_cpoint_norm:
(setup stackframe)
(compute)
(return result)

_3dpoint_norm:
(setup stackframe)
(compute)

(return result)

_main:
this = point
push this

call (something)

Which adr. to put here?

NTNU - Trondheim
Norwegian University of

Science and Technology

www.ntnu.edu ¥

Number the methods

* |nherited/overridden methods can share the same index

Class A{
void f(); 0

}

Class B extends A {
void f(); 0
void g(); 1
void h(); 2

}

Class C extends B {
void e(); 3

}

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Each class gets a table

* Keeping the indices consistent per method,

A B C
f &a f f &b f f &b _f
g &b.g g &bg
h &b h h &b _h
= e &ce

a call to “f” for either of these classes is a call to
“method #0”

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥

Static lookup by cast

* With an explicit cast, the table to use can be determined

statically
A
f &a f

B
f

g
h

&b _f
&b g
&b _h

B my b = new B();

((A) my_b).f()

®© oQ QO

&b_f
&b g
&b _h
&c e

«— resolves to “call method 0 in table A",
where we find ptr. to A-s
implementation of f()

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥

Dynamic lookup by instance

* With an explicit cast, the table to use can be determined

statically
A B C
f &a f f &b f f &b _f
g &b.g g &b.g
h &b h h &b _h
= e &ce

B my b = new B();
my_b.f() «— Resolves to “call method 0 in table B”,
where we find ptr. to B-s overridden

implementation of f()
NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

Dynamic table identification

* In order to resolve which table to use based on an object instance, the
instance must be constructed with a pointer to the right table

A DV B_DV C DV
f &af f&b_f (0) f &b f
g &bg g &b.g
h &b _h h &b h
e &c e
B my b =new B(0);
creates an instance
my_b
dv &B DV
my_b.f()
creates an indir. call aa segmen
(text segment) NTNU - Trondheim.
my_b S (g) | (0 R
dv &B_DV - b_f:
g &b_g (do_stuff)
h

This (mildly) complicates the
call mechanism

* Generated function calls go
push param1
push param?2..
call function

* Generated method calls go

dv = dv_offset(this) < ‘this’ is an object instance, dv is table’s offset
adr = n(dv) «— where ‘n’ is the method index, dv the table
push param1

push param2...

push this «— implicit argument, as we discussed before

call adr
Via this indirection, the function called will be T —
found via the dv table an instance is constructed with bdul et

\
www.ntnu.edu ¥

Why ‘dv’'?

* This mechanism is called a Dispatch Vector

...0or a dispatch table...
...0r a selector table....
...but vector is as good a name as any.

* All DV-s can be statically generated at compile time

Data segment Text segment

A DV: / a_f:

&a f /¥ 0 */ [* code for A.f*/

B DV: (offset in table is a
& f 0¥ > Dbf constant multiple of
& g /*17% /* code for B.f */ method index: all

& h /*2% b_g: pointers have the

C DV: /* code for B.g */ same size...)

e ol t;_h: de for B.h */

* 4 * *code forB.h * NTNU - Trondheim
iﬁ—ﬁ ; 2 ;/ B Neiabou it
&c e /* 3% > C_¢€:

[*code for C.e */

It allows Inheritance

* C can get most of its methods from B

— Syntax says it’s a subclass
— Compiler embeds that when generating the dispatch vector

Data segment

A DV:
&a f
B DV:
&b f
&b g
&b _h

&b f
&b g
&b h
&c e

C DV:

/*0*

0
"1
27

/>0
*17%
[* 2%
[* 3%

\

\
www.ntnu.edu ¥

Text segment
a f.
[* code for A.f */

b f:
[* code for B.f */
b_g:
[* code for B.g */
b_h:
/* code for B.h */

c_e:
[*code for C.e */

NTNU - Trondheim
Norwegian University of
Science and Technology

It allows overriding

* B provides a different implementation of f() than A

does

Data segment

&a f

&b f
&b g
&b h

&b f
&b g
&b h
&c e

A_DV:

B DV:

C DV

/*0*

/0%
[* 1%
[* 2%

[*0*
*17%
[*2%
I* 3%

B

Text segment
a f.
[* code for A.f */

b f:
/* code for B.f */
b_g:
/* code for B.g */
b_h:
/* code for B.h */

c_e:
[*code for C.e */

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

Interfaces

* This creates a natural interpretation of interfaces
(which are classes without an implementation)

* They amount to constraints on the dispatch vector
layout for classes that implement them

* They can be disposed of after compilation

* Abstract classes contain a dispatch vector layout and
some specific implementations to point it at

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

Objects can be put on heap
* B my_b =new B();

*Stack Hea

Tl 12 -~ »{dv=8B_ DV}
Data segment Text segment
A DV: / a f.
&a_f /*0*/ /[* code for A.f */

»B DV:
&b f *o* ———— > Db f
& g /1% /* code for B.f */
&b h [*2* b_g:
C DV /* code for B.g */
&b f /*0* b_h:
Bblg fA— | [feodeforBh e
&b_h / * 2 */ B gciemf e(lnilL'I]"eci]'l]‘{}llE)gyf
&c e [*3* > C e
[*code for C.e */

Objects can be put on stack

« Bmy b =B(); R
Y- () (The dv pointer is a field of
e constant size in either case)
dv = &B_DV

}

Data segment Text segment

A DV: a f.

&a f /*0 *// /* code for Af*/

—»B DV:

&b f 0% ————— > b_f

& g /1% /* code for B.f */

&b h [*2 % b_g:

C_5V: /* code for B.g */

&b f [*0* b_h:

&b_g [*17% / /* code for B.h */ B NTNU - Trondheim
— Norwegian University of

&b_h /* 2 */ Science and Technology

&c e [*3* > C e:
B [*code for C.e */

Footnote on memory access

* Fields that are not multiples of register size can be

laid out densely, or with padding
— For e.g. a CPU with 4-byte words,
struct { char a; int16_t b; char c}
can be laid out as

a

b

1

b

2

C

or alternatively,

a

0

0

0

b

1

b

2

0

0

C

0

0

0

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

Byte-aligned access is not
always supported

* Some processors demand register-aligned adresses,
SO

a b, b c

1 2

will force the compiler to generate a fetch of the
whole thing, and code to mask out and shift the

I t .
© e.m ents you wan (The code to do this
i.e. foraccess to b]
b b can easily take more
a by b, ¢ Load ghace than you save

0 b, b, 0 Delete by packing data) @ e e i
Science and Technology
b, b, 0 0

Byte-aligned access is slow

* Hardware-support for unaligned access typically does the
load-mask-delete thing anyway

* You don’t have to write it, but it takes time (~10x)

* I'm just mentioning this because the memory-indirection
scheme might indicate that dynamic dispatch adds great
run-time overhead

* Memory access is expensive, but not always in a way
that's easy to expect...

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

Next up

* An introduction to 64-bit x86 assembly programming

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

