

1

Three-address code (TAC)

TDT4205 – Lecture 16

2

On our way toward the bottom
We have a gap to bridge:

Words

Grammar

Semantics

Source program

Program should
do the same
thing on all of
these, but
they’re all
different...

3

High-level intermediate representation (IR)

• Working from the syntax tree (or similar), we can capture the
program’s meaning without hardware details

• If we generalize the representation a bit, we can even liberate it
from the specific syntax of the source language

• The main GCC distribution gives you several front-ends
(scan/parse/translate) which target the same IR

C

C++

Ada

Go

Fortran

GENERIC
(tree repr. at function level) (CPU-specifics)

There are more, but they’re not part of the main distribution (yet)...

4

From the other end
• CPU-specific details go into things like how to store

addresses, how many registers there are, if any of
them have special purposes, etc. etc.

• They all have pretty similar sets of operations, though

• With an abstraction for that, we can re-use most of the
low level logic for different machines

Low-level
IR

Generator

5

Stored-program computing

• If we ignore their implementation details, practically every*
modern CPU looks like** a von Neumann machine, ticking along
to a clock that makes it periodically

– Fetch an instruction code (from a memory address)

– Fetch the operands of the instruction (from a memory address)

– Execute the instruction to obtain its result

– Put the result somewhere clever (into a memory address)

Control Arithmetic/Logic

Memory
(contains both data and program)

CPU

RAM

* research contraptions and exotic experiments notwithstanding

** note that they aren’t actually made this way anymore, but emulate it for the sake of programmability

6

There are only two things to handle

• Instructions for the control unit
• Data for the arithmetic/logic unit

– Instructions and data are both found at memory addresses, but we can use
symbolic names for those

– Labels for instructions
– Names for variables

• It’s handy to sub-categorize the instructions into
Binary operations

Unary operations

Copy operations

Load/store operations

Unconditional jumps
Conditional jumps
Procedure calls

Math, logic,
data movement

Control flow

7

TAC is a low-level IR

• It’s “three-address” because each operation deals
with at most three addresses:

Binary operations: a = b OP c OP is ADD, MUL, SUB, DIV…

Unary operations: a = OP b OP is MINUS, NEG, …

Copy: a = b

Load/store: x = &y address-of-y

 x = *y value-at-address-y

 x[i] = y address+offset

 ...

8

TAC is a low-level IR
• Control flow gets the same treatment:

Label: L: ← named adr. of next instr.

Unconditional jump: jump L ← go to L and get next instr.

Conditional jump: if x goto L ← go to L if x is true

 ifFalse x goto L ← go to L if x is false

 if x < y goto L ← comparison operators

 if x >= y goto L

 if x != y goto L

 …

Call and return: param x ← x is a parameter in next call

 call L ← almost like jump (more later)

 return ← to where the

 last call came from

9

Internal representation

• With at most three locations in each operation, they can be
written as entries in a 4-column table (quadruples):

• This is one (possible) translation of z = (x*x) + (y*y)

op arg1 arg2 result

mul x x t1

mul y y t2

add t1 t2 t3

copy t3 z

10

It can be trimmed down still

• Three columns (triples) suffice if we treat the
intermediate results as places in the code

• We could decouple the instruction index from the
position index (indirect triples)

(Instr. #) op arg1 arg2

(0) mul x x

(1) mul y y

(2) add (0) (1)

(3) copy z (2)

One can imagine any number of implementations,
the TAC part is that each instruction deals with 3 locations...

11

Static Single Assignment
• Programs are at liberty use the same variable for different purposes

in different places:
z = (x*x) + (y*y); // Get a sum of squares

if (z > 1) // We’re only interested in distances > 1

 z = sqrt(z); // Get the distance from (0,0) to (x,y)

– A compiler might make use of how z plays two different parts here
– It can also introduce as many intermediate variables as it likes:

z1 = (x*x) + (y*y);

if (z1 > 1)

 z2 = sqrt(z1);

z3 = Φ (z1, z2)

– This makes it explicit that z1 and z2 are different values computed at different points,
and that the value of z3 will be one or the other

– We can read that from the source code, a compiler needs a representation to

recognize it

12

Translations into low IR

• We have two intermediate representations

• We need a systematic way to translate one into the
other

• Suppose we let
e denote a construct from high IR

T [e] denote its translation into low IR

t = T [e] denote the assigment that puts the outcome of T[e] in t

to have a notation which can capture nested
applications of a translation

13

Simple operations

• Disregarding how complicated the
contents of e1, e2 are, this generally
translates

t = T [e1 op e2]

into
t1 = T [e1]

t2 = T [e2]

t = t1 op t2

• In other words,
First, (recursively) translate e1 and store its result

Next, (recursively) translate e2 and store its result

Finally, combine the two stored results

op

e1 e2

14

This linearizes the program

• In terms of a syntax tree, we’re laying out its parts in
depth-first traversal order:

t1 = 1

t2 = 3

t = 1 + 3

(from the bottom, where arguments are values)

*

+ 5

1 3

15

This linearizes the program

• Evaluate one part after another

t1 = 1

t2 = 3

t3 = 1 + 3

t4 = t3

t5 = 5

t6 = t3 * 5

*

+ 5

1 3

Same pattern applied
to sub-trees, in order

16

This linearizes the program

• Combine the local parts which represent sub-trees:

t1 = 1

t2 = 3

t3 = 1 + 3

t4 = t3

t5 = 5

t6 = t3 * 5

1 3
Final result is the
whole expressiont = t6

+

*

5

17

Nested expressions

• Combine the local parts which represent sub-trees:

t1 = 1

t2 = 3

t3 = 1 + 3

t4 = t3

t5 = 5

t6 = t3 * 5

t = t6

T [1 + 3]

T [t3 * 5]
T [(1+3) * 5]

t = T[(1+3)*5]

18

Statement sequences

• These are straightforward since they are already
sequenced:

T [s1; s2; s3; …; sn] becomes
T [s1]

T [s2]

T [s3]

…

T [sn]

• Just translate one statement after the other, and append
their translations in order

19

Assignments

• T [v = e] requires us to
Obtain the value of e

Put the result into v

Since e is already (recursively) handled,

T [v = e] becomes

t = T [e]

v = t

(or just

v = T [e]

if it’s convenient to recognize the shortcut)

=

v e

20

Array assignment

• T [v[e1] = e2] requires us to
– Compute the index e1
– Compute the expression e2
– Put the result into v[e1]

t1 = T [e1]

t2 = T [e2]

v [t1] = t2

=

v[e1] e2

v e1

21

Conditionals

• These require control flow
T [if (e) then s] becomes

t1 = T [e]

ifFalse t1 goto Lend

T [s]

Lend:

(transl. of next statement comes here)

if

e s

(condition) (statement)

22

Conditionals

• If e is true, control goes through s

• If e is false, control skips past it

t1 = T [e]

ifFalse t1 goto Lend

T [s]

Lend:

if

e s

(condition) (statement)

t1 = true t1 = false

23

Conditionals + else

• You can probably guess this one:

t1 = T [e]

ifFalse t1 goto Lelse

T [s1]

jump Lend

Lelse:

T [s2]

Lend:

if

e s1

t1 = true
t1 = false

s2

24

Loops (in while flavor)

• The condition must be tested every iteration
T [while (e) do s] becomes

Ltest:

t1 = T [e]

ifFalse t1 goto Lend

T [s]

jump Ltest

Lend:

while

e s

t1 = true
t1 = false

25

Loops are loops
• For the sake of completeness,

for(i=0; i<10; i++) {
 stuff();
}

i = 0;
while (i<10) {
 stuff();
 i = i + 1
}

do {
 stuff();
} while (x);

stuff();
while (x) {
 stuff();
}

Different kinds of loops are equivalent to the point of
syntactic sugar, whatever form your
compiler likes best works also for the others

26

Switch
(if-elseif style)

T [switch (e) { case v1:s1,…, case vn: sn }]

can become

t = T[e]

ifFalse (t=v1) jump L1

T[s1]

L1:

ifFalse (t=v2) jump L2

T[s2]

L2:

…

ifFalse (t=vn) jump Lend

T [sn]

Lend:

switch

e v1 s1 v2 s2 v3 s3

27

Switch
(by jump table)

T [switch (e) { case v1:s1,…, case vn: sn }]

can also become
t = T[e]

jump table[t]

Lv1:

T[s1]

Lv2:

T[s2]

…

Lvn:

T [sn]

Lend:

provided that the compiler can generate a table which maps v1,…,vn into the target
addresses Lv1, … Lvn for the jumps

(We didn’t talk about computed jumps, but labels are just addresses which can be
calculated. I mention this because it’s probably what you’ll see if you disassemble
your favourite compiler’s interpretation of a switch statement.)

switch

e v1 s1 v2 s2 v3 s3

28

Labeling scheme

• Labels must be unique

• This can be handled by numbering the statements that generate them:
if (e1) then s1;

if (e2) then s2;

becomes

t1 = T[e1]

ifFalse t1 goto Lend1

T[s1]

Lend1:

t2 = T[e2]

ifFalse t2 goto Lend2

T[s2]

Lend2:

(...and so on...)

29

Nested statements
if (e1) then if (e2) then a = b

requires a little care, nesting (as with expressions) gives

t1 = T [e1]

ifFalse (t1) goto Lend1

t2 = T [e2]

ifFalse (t2) goto Lend2

t3 = b

a = t3

Lend2:

Lend1:

Statement

Inner if (#2)

Outer if (#1)

The counting scheme must behave like a stack
(to generate end-labels in matching order with construct beginnings)

30

Those were the basics

• You can surely work out similar patterns for many
statement types of your own invention

or try some from your favourite language

• Things we didn’t talk about
– Redundant code after translation

(Artifacts we want the low IR to expose, so that we can remove them)

– Procedure call and return
(Should be decorated with little background in CPU architecture)

• These are for next time

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

