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Three-address code (TAC)

TDT4205 – Lecture 16
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On our way toward the bottom
We have a gap to bridge:

Words

Grammar

Semantics

Source program

Program should 
do the same 
thing on all of 
these, but 
they’re all 
different...
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High-level intermediate representation (IR)

• Working from the syntax tree (or similar), we can capture the 
program’s meaning without hardware details

• If we generalize the representation a bit, we can even liberate it 
from the specific syntax of the source language

• The main GCC distribution gives you several front-ends 
(scan/parse/translate) which target the same IR

C

C++

Ada

Go

Fortran

GENERIC
(tree repr. at function level) (CPU-specifics)

There are more, but they’re not part of the main distribution (yet)...
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From the other end
• CPU-specific details go into things like how to store 

addresses, how many registers there are, if any of 
them have special purposes, etc. etc.

• They all have pretty similar sets of operations, though

• With an abstraction for that, we can re-use most of the 
low level logic for different machines

Low-level
IR

Generator
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Stored-program computing

• If we ignore their implementation details, practically every* 
modern CPU looks like** a von Neumann machine, ticking along 
to a clock that makes it periodically

– Fetch an instruction code (from a memory address)

– Fetch the operands of the instruction (from a memory address)

– Execute the instruction to obtain its result

– Put the result somewhere clever (into a memory address)

Control Arithmetic/Logic

Memory
(contains both data and program)

CPU

RAM

* research contraptions and exotic experiments notwithstanding

** note that they aren’t actually made this way anymore, but emulate it for the sake of programmability
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There are only two things to handle

• Instructions for the control unit
• Data for the arithmetic/logic unit

– Instructions and data are both found at memory addresses, but we can use 
symbolic names for those

– Labels for instructions
– Names for variables

• It’s handy to sub-categorize the instructions into
Binary operations

Unary operations

Copy operations

Load/store operations

Unconditional jumps
Conditional jumps
Procedure calls

Math, logic,
data movement

Control flow
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TAC is a low-level IR

• It’s “three-address” because each operation deals 
with at most three addresses:

Binary operations: a = b OP c         OP is ADD, MUL, SUB, DIV…

Unary operations: a = OP b            OP is MINUS, NEG, …

Copy: a = b

Load/store: x = &y address-of-y

  x = *y value-at-address-y

  x[i] = y address+offset

 ...
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TAC is a low-level IR
• Control flow gets the same treatment:

Label:   L: ← named adr. of next instr.

Unconditional jump:  jump L ← go to L and get next instr.

Conditional jump:   if x goto L ← go to L if x is true

   ifFalse x goto L ← go to L if x is false

   if x < y goto L ← comparison operators

   if x >= y goto L

                                 if x != y goto L

   …

Call and return:   param x ← x is a parameter in next call

   call L ← almost like jump (more later)

   return ← to where the

  last call came from
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Internal representation

• With at most three locations in each operation, they can be 
written as entries in a 4-column table (quadruples):

• This is one (possible) translation of z = (x*x) + (y*y)

op arg1 arg2 result

mul x x t1

mul y y t2

add t1 t2 t3

copy t3 z
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It can be trimmed down still

• Three columns (triples) suffice if we treat the 
intermediate results as places in the code

• We could decouple the instruction index from the 
position index (indirect triples)

(Instr. #) op arg1 arg2

(0) mul x x

(1) mul y y

(2) add (0) (1)

(3) copy z (2)

One can imagine any number of implementations,
the TAC part is that each instruction deals with 3 locations...
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Static Single Assignment
• Programs are at liberty use the same variable for different purposes 

in different places:
z = (x*x) + (y*y); // Get a sum of squares

if ( z > 1 ) // We’re only interested in distances > 1

    z = sqrt(z); // Get the distance from (0,0) to (x,y)

– A compiler might make use of how z plays two different parts here
– It can also introduce as many intermediate variables as it likes:

z1 = (x*x) + (y*y);

if ( z1 > 1 )

    z2 = sqrt(z1);

z3 = Φ ( z1, z2 )

– This makes it explicit that z1 and z2 are different values computed at different points, 
and that the value of z3 will be one or the other

– We can read that from the source code, a compiler needs a representation to

recognize it
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Translations into low IR

• We have two intermediate representations

• We need a systematic way to translate one into the 
other

• Suppose we let
e denote a construct from high IR

T [ e ] denote its translation into low IR

t = T [ e ] denote the assigment that puts the outcome of T[e] in t

to have a notation which can capture nested 
applications of a translation
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Simple operations

• Disregarding how complicated the 
contents of e1, e2 are, this generally 
translates

t = T [ e1 op e2 ]

into
t1 = T [ e1 ]

t2 = T [ e2 ]

t = t1 op t2

• In other words,
First, (recursively) translate e1 and store its result

Next, (recursively) translate e2 and store its result

Finally, combine the two stored results

op

e1 e2
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This linearizes the program

• In terms of a syntax tree, we’re laying out its parts in 
depth-first traversal order:

t1 = 1

t2 = 3

t = 1 + 3

(from the bottom, where arguments are values)

*

+ 5

1 3
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This linearizes the program

• Evaluate one part after another

t1 = 1

t2 = 3

t3 = 1 + 3

t4 = t3

t5 = 5

t6 = t3 * 5

*

+ 5

1 3

Same pattern applied
to sub-trees, in order
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This linearizes the program

• Combine the local parts which represent sub-trees:

t1 = 1

t2 = 3

t3 = 1 + 3

t4 = t3

t5 = 5

t6 = t3 * 5

1 3
Final result is the 
whole expressiont = t6

+

*

5
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Nested expressions

• Combine the local parts which represent sub-trees:

t1 = 1

t2 = 3

t3 = 1 + 3

t4 = t3

t5 = 5

t6 = t3 * 5

t = t6

T [ 1 + 3 ]

T [ t3 * 5 ]
T [ (1+3) * 5 ]

t = T[(1+3)*5]
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Statement sequences

• These are straightforward since they are already 
sequenced:

T [ s1; s2; s3; …; sn ] becomes
T [ s1 ]

T [ s2 ]

T [ s3 ]

…

T [ sn ]

• Just translate one statement after the other, and append 
their translations in order
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Assignments

• T [ v = e ] requires us to
Obtain the value of e

Put the result into v

Since e is already (recursively) handled,

T [ v = e ] becomes

t = T [ e ]

v = t

(or just

v = T [ e ]

if it’s convenient to recognize the shortcut)

=

v e
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Array assignment

• T [ v[e1] = e2 ] requires us to
– Compute the index e1
– Compute the expression e2
– Put the result into v[e1]

t1 = T [ e1 ]

t2 = T [ e2 ]

v [ t1 ] = t2

=

v[e1] e2

v e1
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Conditionals

• These require control flow
T [ if ( e ) then s ] becomes

t1 = T [ e ]

ifFalse t1 goto Lend

T [ s ]

Lend:

(transl. of next statement comes here)

if

e s

(condition) (statement)
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Conditionals

• If e is true, control goes through s

• If e is false, control skips past it

t1 = T [ e ]

ifFalse t1 goto Lend

T [ s ]

Lend:

if

e s

(condition) (statement)

t1 = true t1 = false
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Conditionals + else

• You can probably guess this one:

t1 = T [ e ]

ifFalse t1 goto Lelse

T [ s1 ]

jump Lend

Lelse:

T [ s2 ]

Lend:

if

e s1

t1 = true
t1 = false

s2
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Loops (in while flavor)

• The condition must be tested every iteration
T [ while (e) do s ] becomes

Ltest:

t1 = T [ e ]

ifFalse t1 goto Lend

T [ s ]

jump Ltest

Lend:

while

e s

t1 = true
t1 = false



  

25

Loops are loops
• For the sake of completeness,

for(i=0; i<10; i++) {
      stuff();
}

i = 0;
while (i<10) {
      stuff();
      i = i + 1
}

do {
      stuff();
} while (x);

stuff();
while (x) {
      stuff();
}

Different kinds of loops are equivalent to the point of
syntactic sugar, whatever form your
compiler likes best works also for the others
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Switch
(if-elseif style)

T [ switch (e) { case v1:s1,…, case vn: sn } ]

can become

t = T[e]

ifFalse (t=v1) jump L1

T[s1]

L1:

ifFalse (t=v2) jump L2

T[s2]

L2:

…

ifFalse (t=vn) jump Lend

T [ sn ]

Lend:

switch

e v1 s1 v2 s2 v3 s3
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Switch
(by jump table)

T [ switch (e) { case v1:s1,…, case vn: sn } ]

can also become
t = T[e]

jump table[t]

Lv1:

T[s1]

Lv2:

T[s2]

…

Lvn:

T [ sn ]

Lend:

provided that the compiler can generate a table which maps v1,…,vn into the target 
addresses Lv1, … Lvn for the jumps

(We didn’t talk about computed jumps, but labels are just addresses which can be 
calculated. I mention this because it’s probably what you’ll see if you disassemble 
your favourite compiler’s interpretation of a switch statement.)

switch

e v1 s1 v2 s2 v3 s3
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Labeling scheme

• Labels must be unique

• This can be handled by numbering the statements that generate them:
if ( e1 ) then s1;

if ( e2 ) then s2;

becomes

t1 = T[e1]

ifFalse t1 goto Lend1

T[s1]

Lend1:

t2 = T[e2]

ifFalse t2 goto Lend2

T[s2]

Lend2:

(...and so on...)
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Nested statements
if (e1) then if (e2) then a = b

requires a little care, nesting (as with expressions) gives

t1 = T [ e1 ]

ifFalse (t1) goto Lend1

t2 = T [ e2 ]

ifFalse (t2) goto Lend2

t3 = b

a = t3

Lend2:

Lend1:

Statement

Inner if (#2)

Outer if (#1)

The counting scheme must behave like a stack
(to generate end-labels in matching order with construct beginnings)
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Those were the basics

• You can surely work out similar patterns for many 
statement types of your own invention

or try some from your favourite language

• Things we didn’t talk about
– Redundant code after translation

(Artifacts we want the low IR to expose, so that we can remove them)

– Procedure call and return
(Should be decorated with little background in CPU architecture)

• These are for next time
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