

1

Derived and abstract data types

TDT4205 – Lecture 15

2

Where we were

• We’ve looked at static semantics for primitive types
– and how it relates to type checking

• We’ve hinted at derived types
– using a multidimensional array declaration as example

• We’ll round of with a quick look at more complicated
derived types, and what they do to the type system

3

Type expressions

• We’ve touched upon this
int[2][3] consists of a basic type int, and (array-of-2 (array-of-3))

• Types can be constructed from basic types

• We’ve also mentioned that types can be converted
into each other according to a hierarchy

(short + char) converts into their least upper bound (int), we can
write it that as a function, lub(short,char)

double

float

long

int

short
byte

char

4

Arrays can be many things

• Unbounded
Java: public static void main (String args[])

• Fixed size
C: char mystring[256];

(Type of mystring contains its size)

• Ranges
Ada: array[2 .. 5] of integer

(Type contains offset for indexing)

• Multidimensional
Fortran: REAL, dimension(2,3) :: A

(Type contains shape, to check that B is (3,2) and C is (2,2) if you write C=matmul(A,B))

No idea how many entries here

5

Records

• Records are collections of names and types
{ id1:T1, id2:T2, … , idn:Tn}

• C calls them struct

• Objects, at their simplest, are just records extended
with references (pointers) to the functions which
manipulate their contents

...and some calling syntax that doesn’t let you invoke its methods
without passing an instance to manipulate...

6

Type constructors

• When the program can define types, the compiler
must be able to construct representations of them, to
– Put in symbol tables

– Consult for conversions

– Etc.

• Generate a structure representing the type at its
declaration

• Bind names to these structures when variables are
determined to be of the matching type

7

Object types

• The type of a record is the cartesian product of all its
component types

• Looking at objects as glorified records, their types are the
same way, just add method signatures

Class Point {
float x, y;

float getX() { return x; }

float getY() { return y; }

}

becomes

{ x: float, y: float, getX : fun(Point → float), getY : fun(Point→float) }

8

Wait a minute...

{ x: float, y: float,

 getX : fun(Point → float), getY : fun(Point→float)

}

 These are not in the argument lists of float getX() or float getY()

– Implementation generates one static lump of code for taking x-s out of
Points

– The reason it acts differently with different instances is that the instance
is passed as a hidden argument:

Point p = new Point(3,2);

p.getX() ↔ Point.getX (p)

– Inside the method body, the hidden argument can go by the name “this”

9

Objects imply more

Class ColoredPoint extends Point {
int color;

int getColor() { return color; }

}

seen as an extended record works out to

{ x: float, y: float, color: int, getX : fun(Point → float), getY : fun(Point→float),
getColor : fun(ColoredPoint → int) }

That alone doesn’t tell us what to do here:

ColoredPoint cp = new ColoredPoint (3.0, 4.0, red);

Point p;

p = cp;

10

Things to support

• Inheritance, subclassing, polymorphism, overloading,
abstract classes, interfaces, etc. create a hierarchy of
derived types

• Type-checking of comparisons, method calls,
assignments, etc. must take this programmer-defined
hierarchy into account

Name Type
p Point
cp ColoredPoint

{ float, float, fun(Point→float), fun(Point→float) }

Point U { int, fun(ColoredPoint→int) }

Subclass relation
(ColoredPoint <: Point)

Symbol table

11

Assignment, revisited

• We had

 id : T |- E : T

id : T |- id = E : T

• Adding subclasses, it becomes

 id : T |- E : S where S <: T

 id : T |- id = E : T

12

Impact on static checking

• The type of an object reference isn’t known at
compile time
– That’s what a class hierarchy is for, different types can step in for

each other

• Overridden methods appear with multiple
implementations

and sligthly different call signatures

• Resolution requires some policy on how much
dynamic information to account for

13

An example with Java

Class Animal {
String voice; void speak() {

 System.out.println (voice);

}

}

gives type { voice : String, speak : fun(Animal→void) }

Class Cat extends Animal {
String voice = “meow”;

}

gives type { voice : String, speak : fun(Animal→void) }

14

Same field name, inherited method

• Fields are statically resolved, not overridden
• Method calls are dynamically dispatched using the run-time type of the

instance, and parameter list + return type

Class Animal {
String voice;

void speak() { println (voice); }

}

Class Cat extends Animal {
String voice = “meow”;

}

(new Cat()).speak(); // ← this prints “null”

// Looking at the Cat type redirects the method call to Animal.speak

Statically resolved

15

Overridden method

Class Animal {
String voice;

void speak() { println (voice); }

}

Class Cat extends Animal {
String voice = “meow”;

void speak() { println (voice); }

}

(new Cat()).speak(); // ← this prints “meow”

// At run time, look at instance and detect that speak : fun(→void) means

// fun (Cat→void) instead of fun(Animal→void)

Statically resolved

16

Objects as records

• One thing the compiler must deal with is how to lay
out instances in memory

• The types of fields and methods indicate what
instances must look like in a flat memory space

Point a
x=2
y=3
*getX
*getY

Text segment
Point_getX:
 return this->x
Point_getY:
 return this->y

Point b
x=6
y=7
*getX
*getY

Heap

This carries through
into the executable
program

17

Objects as abstract data types

– Checking, say, that

a.getX() == b.getY()

is correctly typed

requires a structure that

shows how both have

methods like that, and

that they return comparable

numbers

Point a
{x,y}
getX()
getY()

ColoredPoint b
{x,y}
getX()
getY()

color=128
getColor()

Point
 <:
ColoredPoint

This may be discarded
after compilation
(well, depending on the language)

18

Summary of the week
(in reverse)
• Representation of types

– Objects make the compiler build a class hierarchy
– Derived types make the compiler construct user-defined type descriptors
– Basic types can be hard-coded in a predefined hierarchy

• Static type checking
– Static type checking goes through all expressions to determine that the

syntax attaches them to meaningful types
– With an attribute grammar, it can be done during parsing

• (Static semantics are a subset of natural semantics)
– You just remove the states

19

That’s a lot to take in

• M’kay, I’m almost finished prattling on about types
now

• All that remains is to take one short peek at how a
simple single inheritance scheme and dynamic call
dispatch can map into low-level code
– After we’ve looked closer at low-level code

20

Is all this really necessary?

• Erm… I know we’ve been skipping along the
borderline of the syllabus here.

• If you know your L and S attributions and can suggest
how to represent simple things in symbol tables, it’ll
be just fine

21

What was it for, then?

• Most practical languages define a far richer notion of
types than just skipping around the syntax tree and
seeing that there are ints and bools in the right places

• Those are what people actually use

• Starting from a vague guess at how their compilers
and run-time systems work, it’s easier to make
improved guesses over time
– The ability to second-guess compilers and run-time systems is a

coveted skill among software developers

22

Next time

• Three-address code
– Which is an abstract cousin of assembly programming

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

