
  

1

Type judgments

TDT4205 – Lecture 13
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Where we are, conceptually

• Last time, we went through a way to see program 
execution as proof construction in a restricted logic
– We’re primarily stealing some notation from that exercise

– Specifically, we’ll portray type judgments as a similar sort of 
inference

• Before that, we went through the connection between 
traversing a syntax tree and inherited/synthesized 
attributes of its internal nodes



  

3

Where we are, textually

• Bouncing back and forth between ch. 5 / 6, I’m afraid

• There are bits about types in both of them

• There are bits in both of them which aren’t about types
As stated at the very beginning, I’m trying to complement the book with intuitions

pro: it provides several different ways to look at the subject

con: it doesn’t come out in the same order as the table of contents

• The stuff we’re presently covering is the foggiest part

• I’ll aim to squeeze in a summary to connect the dots as soon 
as we get through 6
(For the meantime, this week draws on 5.3, 6.3 and 6.5)
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A declaration
(This is a walkthrough of Fig.5.17 in the Dragon)

T → B C

B → int | float

C → [ num ] C | ε

permits
int[2][3]

to generate 

T

B C

C

C[3]

[2]

ε

int
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L-attribution, step 1

T.basic_type = int

↑ B.type = int C

C

C[3]

[2]

ε

int
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L-attribution, step 2

T.basic_type = int

↓ C.basic_type = int
↑ C.type = array ( 2, <something> )

C

C[3]

[2]

ε

int

B.type = int
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L-attribution, step 3

T.basic_type = int

↓ C.basic_type = int
↑ C.type = array ( 2, <something> )

↓ C.basic_type = int
↑ C.type = array (3, <something> )

C[3]

[2]

ε

int

B.type = int
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L-attribution, step 4

T.basic_type = int

↓ C.basic_type = int
↑ C.type = array ( 2, <something> )

↓ C.basic_type = int
↑ C.type = array (3, <something> )

↓C.basic_type = int
↑C.type = int[3]

[2]

ε

int

B.type = int
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L-attribution, step 5

T.basic_type = int

↓ C.basic_type = int
↑ C.type = array ( 2, <something> )

↓ C.basic_type = int
↑ C.type = array (3, int )

↓C.basic_type = int
↑C.type = int[3]

[2]

ε

int

B.type = int
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L-attribution, step 5

T.basic_type = int

↓ C.basic_type = int
↑ C.type = array ( 2, array(3,int) )

↓ C.basic_type = int
↑ C.type = array (3, int )

↓C.basic_type = int
↑C.type = int[3]

[2]

ε

int

B.type = int
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L-attribution, step 6
T.basic_type = int

T.type = array (2, array (3, int) )

↓ C.basic_type = int
↑ C.type = array ( 2, array(3,int) )

↓ C.basic_type = int
↑ C.type = array (3, int )

↓C.basic_type = int
↑C.type = int[3]

[2]

ε

int

B.type = int
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Attribution rules

T → B C Synthesize T.basic_type

                                              Let C inherit T.basic_type

                                              Synthesize T.type = C.type

B → int B.type = int

B → float B.type = float

C0 → [ num ] C1 Let C1 inherit C0.basic_type

                              Synthesize C0.type = array (num, C1.type)

C → ε               Synthesize C.type = C.basic_type
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A smaller example

• Take these ternary expressions:
Tern → Bexp ? Exp : Exp

Bexp → true | false | Exp > Exp

Exp → num | var

and create the parse tree for

x>2 ? 1 : x

Tern

Bexp num var

var num

x 2

1 x
>
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A smaller example

• To verify that it’s a valid expression,
Tern → Bexp ? Exp1 ; Exp2            visit Bexp, synthesize bool                  
                                                        synthesize Exp1.type

                                                         synthesize Exp2.type

                                                         enforce Exp1.type = Exp2.type

Bexp → true | false                           synthesize bool

Bexp → Exp1 > Exp2             synthesize Exp1.type

                                                         synthesize Exp2.type

                                                         enforce Exp1.type = Exp2.type

Exp → num                                Exp.type = num.type

Exp → var                                  Exp.type = var.type
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Very Strictly, in traversal order
Tern.type = int

(if x is int)

Bexp.type = bool
(if x is int)

num.type = int Var.type = x.type

var.type = x.type num.type = int

x 2

1 x

(Strictly because we require x to be an int)
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More relaxed

Tern.type = x.type
(convert 1 to x.type)

Bexp.type = bool
(convert 2 to x.type)

num.type = int var.type = x.type

var.type = x.type num.type = int

x 2

1 x

Say we allow conversion from int to x.type (whatever it is):
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Disregarding the order

• For the strict interpretation, we could write

 Bexp : bool        Exp1 : T          Exp2 : T 

            Bexp ? Exp1 ; Exp2 : T

and

Exp1 : T                                 Exp2 : T

       Bexp : bool |- Exp1 > Exp2 : bool

to capture the ideas that
– Bexp is boolean when Exp1 and Exp2 have the same type T

– Bexp ? E1 ; E2 has type T when E1 and E2 have the same type T
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Proof tree

x : T2      2:T2

(x > 2) : bool            1:T1         x:T1

              (x > 2 ? 1 ; x) : T1

and get a substitution consistent with the rules if 
T1=T2=int:

x : int      2: int

(x > 2) : bool            1 : int         x : int

              (x > 2 ? 1 ; x) : int
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Another proof tree

Changing the expression a little

x : T2      2:T2

(y > 3.14) : bool            1:T1         x:T1

              (y > 3.14 ? 1 ; x) : T1

a consistent substitution might be T1=int, T2=float:

y : float      3.14: float

(y > 3.14) : bool            1 : int         x : int

              (y > 3.14 ? 1 ; x) : int
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In general

• We can attach static type semantics to syntax in the 
format

H1 |- S1 : T1     …   Hn |- Sn : Tn

              H0 |- S0 : T0

and let
– Hx be conjectures to prove,

– Sx be parts of syntax expressions
– Tx be the inferences of type information 
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Attribute grammars vs. static  
natural semantics
• In terms of traversal ordering, this corresponds to

inputs (derived from the statement), and

outputs (from the inference process)

H1 |- S1 : T1     …   Hn |- Sn : Tn

              H0 |- S0 : T0

i.e., start from a conjecture, work through all its 
premises, conclude with the derived information
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What are the H-s?

• Hypotheses. We could write out the reasoning in full,

y : T1      3.14 : float

y : float |- (y > 3.14) : bool     |- 1 : int     x : int |- x : T2

           y:float, x:int |- (y > 3.14 ? 1 ; x) : T2

to verify that what we hypothesized (“y is float, x is int”) is 
consistent with the schema in at least one substitution of T1, T2
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Why I prefer this notation

• It doesn’t mix implementation (traversal order) with 
definition (rules of the type system)

• The attribute grammar approach is a special case of 
inference rules anyway
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They’re the same when...

1) There are no missing definitions
Everything in the outputs is also found from an input somewhere

2) There are no missing rules
Each syntax construct must have an applicable rule

3) It’s deterministic
There is only one applicable rule for each syntax construct

4) There are no constraints
Inputs are just variables

5) There are no links
No variables appear in several input positions

6) There is nothing dynamic
Constructs in premises are strictly parts of the construct in the conclusion
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Don’t memorize that list 
(unless you want to)
• We will only look at cases where these inference 

rules could be exchanged for a tree traversal plan

• I just want to introduce the notation
– It is used elsewhere in the literature

– It can describe type information without pulling the details of 
attribution order into the picture all the time

• It would be downright cruel to set up problems that 
cannot be equally well expressed the way our book 
does it.
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So, what’s a type judgment?

• It’s a claim about a statement, written
|- E : T

which reads “E is a well-typed construct of type T”

• Type-checking a program P requires demonstrating 
that |- P : T for a type T

• It can be done by traversal and attribution

• It can be done by some other logical inference engine
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Honestly

• We won’t be implementing type checking, our toy language has 
almost nothing in the way of types

• As far as this class goes, we’ll do as we do with the bottom-up 
parsing schemes, as long as you can
– Read and understand inference rules
– See that they can be implemented by tree traversal and attribution

There is no need to split hairs over the β-s and γ-s

• The valuable takeaway is to build a vocabulary that lets you make an 
informed guess about how types might be handled by your favorite 
programming language
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Next up

• Next time, we’ll
– Chuck together a bunch of inference rules for various basic things 

that are common in many languages

and talk a bit about
– Static vs. dynamic types

– The strength of a type system

– What it means that one thing is equal to another
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