

SLR, LALR and LR(1) parsing tables

www.ntnu.edu TDT4205 – Lecture 11

Limitations of LR(0)

- We have seen how LR parsing operates in terms of an automaton + a stack
 - States are created from closures of items
 - Transitions are actions based on the top of the stack, either before or after the next token is shifted
- The grammars that fit LR(0) are a bit more restrictive than they need to be
 - Specifically, they can stall on decisions which can easily be resolved by looking ahead in the token stream

To shift, or to reduce?

Consider this grammar (which models arbitrarily long sums of terms)

```
S \rightarrow E (A statement is an expression)

E \rightarrow T + E (An expr. can be a sum of a term and an expr.)

E \rightarrow T (An expr. can be a term)

T \rightarrow x (A term can be a number, variable, whatever)
```

 The start symbol has just one production, we won't need to augment the grammar with any placeholder

In short order

 $S \rightarrow E$ $E \rightarrow T + E$ $E \rightarrow T$ $T \rightarrow x$

Closure of S → .E is a state

$$S \rightarrow .E$$

 $E \rightarrow .T + E$
 $E \rightarrow .T$
 $T \rightarrow .x$

Transitions on E, T, x, find closures at destination:

In short order

 $S \rightarrow E$ $E \rightarrow T + E$ $E \rightarrow T$ $T \rightarrow x$

Transition on +, find closure at destination

In short order

Transitions on T, E, x, closures, and we're done

Numbers everywhere

In the grammar, and on the states

Most of the LR(0) table

 $T \rightarrow .x$

0)
$$S \rightarrow E$$

1) $E \rightarrow T + E$
2) $E \rightarrow T$
3) $T \rightarrow x$

Here's what we get for the unproblematic states:

Shift/reduce conflict

0)
$$S \rightarrow E$$

1) $E \rightarrow T + E$
2) $E \rightarrow T$

g3

g3

3) $T \rightarrow x$

State 3 could shift and go to 4 on '+'

Shift/reduce conflict

0)
$$S \rightarrow E$$

1) $E \rightarrow T + E$
2) $E \rightarrow T$
3) $T \rightarrow x$

- State 3 could also reduce production 2
- Parser can't decide here.

	X	+	\$	Е	Т
1	s5			g2	g3
2			a		
3	r2	r2,s4	r2		
4	s5			g6	g3
5	r3	r3	r3		
6	r1	r1	r1		

The immediate solution

- Wait with reductions until there are no more + tokens to shift
 - Like the longest match rule for regex
- All we need to know is what the next token will be
 - Buffer it, to look at what's coming
- When are we interested?
 - When the next token belongs to a construct that only comes after the nonterminal we are working through a production for
- We did that already
 - For a production A → α, any expected token which isn't in α goes into the set of tokens FOLLOW(A)
 - That is its definition

Reworking the reductions

- With 1 token lookahead, reducing states no longer need to reduce regardless of what comes next
- We can insert reduce actions a little more selectively, that is

When an item $A\rightarrow \alpha$. suggests that a state is reducing, put the reducing action in the table only at tokens in FOLLOW(A)

Reworking the reductions

0)
$$S \rightarrow E$$

1) $E \rightarrow T + E$
2) $E \rightarrow T$
3) $T \rightarrow x$

- E → T. is our problem item here
 - FOLLOW(E) = {\$}, by prod. 0; E always remains on the far right in derivations
- E → T + E. is a reduction, too
 - We already found FOLLOW(E)
- $T \rightarrow x$. FOLLOW(T) = {+,\$} (+ because of prd. 1, \$ because of prd. 2)
- S → E.
 FOLLOW(S) = {\$} (S is never on a r.h.s of anything)

An updated table

0)
$$S \rightarrow E$$

1) $E \rightarrow T + E$
2) $E \rightarrow T$
3) $T \rightarrow x$

Taking this into account, state 3 is no longer difficult

That was the SLR table

- aka. "Simple LR"
- So named because it is just a tiny adjustment of the LR(0) scheme
- It does not, however, take all the information that it can out of having a lookahead symbol
- That's what the full-blown LR(1) scheme does

A grammar that needs more

```
S' \rightarrow S

S \rightarrow V = E

S \rightarrow E

E \rightarrow V

V \rightarrow X

V \rightarrow *E
```

- To revamp the whole scheme with lookahead symbols, the idea of an item can be extended
- Take this (sub-)grammar of expressions, variables, and pointer dereference a la C:

```
S' \rightarrow S (Unique production to start with) S \rightarrow V = E (Expr. can be assigned to variables) S \rightarrow E (Expressions are statements) E \rightarrow V (Variables are expressions) V \rightarrow x (Variables can be identifiers) V \rightarrow *E (Variables can be dereferenced pointer expressions) (...and pointer expressions can have variables in them...)
```

• This is not SLR (Can you figure out why not?)

Revisit the items

LR(1) items include a lookahead symbol

 $A \rightarrow \alpha$. $X \beta$ says we're ahead of X between α and β $A \rightarrow \alpha$. $X \beta$ says the same, but t is the next token

Take an item like [A → . X & %]

'%' might be found in some expansion of X, so we need

 $X \rightarrow .$ < something > %

 $X \rightarrow .$ <somethingelse> %

and all variants of X while foreseeing '%'.

It can also be that X will reduce without shifting more stuff

The production says that we might see '&' as lookahead at this point, so

 $X \rightarrow$. <something> &

 $X \rightarrow . < somethingelse > 8$

are also possibilities we must include in the closure.

For our grammar

Starting out as before, we get that

$$S' \rightarrow .S$$
 ?

has no sensible lookahead, because you can't look beyond the end

After S comes \$, carry that through all nonterminal expansions

$$S \rightarrow .V = E$$
 \$
 $S \rightarrow .E$ \$
 $E \rightarrow .V$ \$
 $V \rightarrow .x$ \$
 $V \rightarrow .*E$ \$

Are there other relevant lookaheads?

$$S' \rightarrow S$$

 $S \rightarrow V = E$
 $S \rightarrow E$
 $E \rightarrow V$
 $V \rightarrow x$
 $V \rightarrow *E$

Looking at

$$S \rightarrow .V = E$$

it is possible that we're about to go to work on a V, and there is an '=' token coming up after it

Taking it into account

$$S \rightarrow .V = E$$

gives that

$$V \rightarrow .x =$$

$$V \rightarrow .*E =$$

also belong in the closure of LR(1) items

(In excessive notation, include the item $[X \to \alpha, \omega]$ for ω in FIRST(βz) where the item you're working out the closure for can be written $[A \to \alpha.X\beta, z]...$)

For short

The first state of our LR(1) automaton thus becomes

$S' \rightarrow .S$?
$S \rightarrow .V = E$	\$
$S \rightarrow .E$	\$
$E \rightarrow .V$	\$
$V \rightarrow .x$	\$
V → .*E	\$
$V \rightarrow .x$	=
V → .*E	=

which we might as well write

$S' \rightarrow S$ $S \rightarrow V = E$ $S \rightarrow E$ $E \rightarrow V$ $V \rightarrow X$ $V \rightarrow *E$

Building the automaton

 The procedure remains the same, just with more elaborate closures

Building the automaton

Building the automaton

This is it

Number states & productions

0) S' \rightarrow S 1) S \rightarrow V = E 2) S \rightarrow E 3) E \rightarrow V 4) V \rightarrow x 5) V \rightarrow *E

Where to put reduce actions

- When an item reduces, its lookahead symbol decides where to tabulate the reduction
- That's the reason why we wanted to track lookahead symbols in the first place

LR(1) parsing table

	X	*	=	\$	S	Е	V
1	s8	s6			g2	g5	g3
2				a			
3			s4	r3			
4	s11	s13				g9	g7
5				r2			
6	s8	s6				g10	g12
7				r3			
8			r4	r4			
9				r1			
10			r5	r5			
11				r4			
12			r3	r3			
13	s11	s13				g14	g7

r5

0) S' → S
1) $S \rightarrow V = E$
2) S → E
3) E → V
4) $V \rightarrow x$

5) V → *E

NTNU – Trondheim Norwegian University of Science and Technology

As you may notice

Some of these states are pretty similar...

0) S' \rightarrow S 1) S \rightarrow V = E 2) S \rightarrow E 3) E \rightarrow V 4) V \rightarrow x 5) V \rightarrow *E

What if we merge them?

i.e. those which are similar except for the lookahead

0) S' \rightarrow S 1) S \rightarrow V = E 2) S \rightarrow E 3) E \rightarrow V 4) V \rightarrow x

LALR parsing table

0) S'
$$\rightarrow$$
 S
1) S \rightarrow V = E
2) S \rightarrow E
3) E \rightarrow V

4) $V \rightarrow x$ 5) $V \rightarrow *E$

LR parsing + this state reduction is Look-Ahead LR (LALR)

	X	*	=	\$	S	E	V
1	s8	s6			g2	g5	g3
2				a			
3			s4	r3			
4	s8	s6				g9	g7
5				r2			
6	s8	s6				g10	g7
7			r3	r3			
8			r4	r4			
9				r1			
10			r5	r5			

