NTNU - Trondheim
Norwegian University of

Science and Technology

Bottom-up parsing

LY
www.ntnu.edu e TDT4205 — Lecture 08

A}

Where we are (again)

* Introducing C.F.Grammars, we said that they include
regular languages, and then some more

Type O
Type 1
~ Context-Free
" Regular’
| | NTNU - Trondheim
B Norwegian University of
Science and Technology

. R
www.ntnu.edu ¥

Memories of past states

* These classes of languages are recognizable by
(abstract) machines of differing power

— We know the finite automata

— Stack machines (or pushdown automata) are like F. A., but with
added push and pop operations that let them trace the path they
took to a state (and revert to where they've been)

Type O
Stack
machines Type 1 \
\ ~ Context-Free
Finite L Regular
Automata | | B NTNU - Trondheim
A Norwegian University of
N S Science and Technology

\ ~ ,
www.ntnu.edu ¥

What does a top-down parser look like?

* We looked at how to make an LL(1) parsing table, but
not at how to turn it into a program

* Here's a grammar that's so simple that we can just
knock the parsing table out by looking at it:

A—>XB|yC X y $
B—-xB]|e¢
C—yC|e A A - xB A - yC
B B - xB B-eg
C C -yC C-¢

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

X y $
A A-xB A-yC
B B - xB B-g

In code c = r—

* One way to implement this is to write a function for each nonterminal, and
make them mutually recursive according to the table

arse A ():
° svﬁtch(()symbol): parsg_B(): parse_C():
_ switch(symbol): switch(symbol):

case X: case X: case X:
add_tree(x, B) add_tree(x,B) error()
match ;X) match(x) case y:

Casepya?rse— () parse_B () add_tree(y,C)

casey: match(y)

add_tree(y, C) error() parse C ()
ELE (37) case $: case $:
parse_C () return return

case $: return return
error()

return

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥

Function calls stack up

* Parsing 'yyy, we get
— The derivatonA—-yC -yyC—-yyyC —-yyy

and the function call stack

Return
Recur: Call Call match(y) Return!
Call match(y) Return parse_C parse_ C parse C
Call Call match(y) Return parse_C parse_ C parse_C parse C parse_C
Call match(y) Return parse_C parse_ C parse_ C parse C parse_C parse C parse C parse C
Call parse_A parse_ A parse A parse A parse A parse A parse A parse A parse A parse A parse A
>
Unwind: Time
Return!
parse_C Return!
parse_C parse_C Return! NTNU - Trondheim
parse C parse C parse C Return! B ;SZ:’;E’E‘:{‘]‘IILT“&]:’;:; ‘::l‘[‘);f
parse_ A parse_A parse A parse A Finished

%
www.ntnu.edu ¥

Recursive descent vs. stack

* Recursive descent parsing uses the function call
mechanism to implement its stack machine
— It's hidden in the programming language, but it is there

* LL(1) can also be done with iterations
— Provided that you're prepared to implement your own stack

* Generally, the need for a stack comes out of the need to

match up beginnings and ends
— Any construct of the sort <start> <thing> <end> where the <thing> can
contain further <start> and <end>s, as in
Expression — (expression)
Statement — { statement }
Comment — (* Comment *)
(/* ML does this, C comments can’t be nested %)

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥

Another way to parse

* The “LL”in LL(1) is
— Left-to-right scan

— Leftmost Derivation (always expand the leftmost nonterminal)

* How can we go at it from the right?
— i.e. get LR parsing, to obtain a Rightmost derivation?

* It will require looking deeper into the token stream
before deciding on productions...

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

A — xB | yC
B—-xB|¢
C—>yC|e

General operation

* Take the same, silly grammar again

* Instead of making a decision as soon as a terminal
comes along, stack them up

LR parser
We might be
- What's next? making an Aora C
i > y’ Y:; Y here, hold on...
AN \ Put it away...

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥

Keep stacking

* As the state of the internal stack grows, it identifies
more and more of a single production rule

LR parser
We're definitely
- What's next? y, working towards
| > y’ y some C-s here,
y

<

\ | how many?
< Put that away too...

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥

Keep stacking

* As the state of the internal stack grows, it identifies
more and more of a single production rule

LR parser
We're definitely
y What's next? y working towards
| > some C-s here,
y how many?
< ...and again...

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥

Enough Is enough

* For this grammar, the sequence ends when the input

does
~ LR parser
- What's next?
y | »“poof*
y
y Ok, time to look at
A what we got!

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Bring out your states

— The stack extension is for memory, the production rules can be
represented by a finite automaton

— It has been watching while we were stacking symbols, so it knows
that we've taken a direction where there are no x-s or B-s

LR parser

A
y This is &, ‘

use C—e¢

(but “backwards”) NTNU - Trondheim
B Norwegian University of

- Science and Technology

‘ﬁureli for illustration... i

Reduce body to head

* We're at the end of the stream, so we’re putting in the
last (rightmost) C nonterminal
— This works out the derivation in reverse order

LR parser

y Put the new —
symbol back on ,
the stack B NTNU - Trondheim
Norwegian University of
o Science and Technology

\
www.ntnu.edu ¥

Next move

LR parser

P

%

<

This is the body

<

of C—>yC

Substitute C and NTNU - Trondheim
Norwegian University of

DUSh — - Science and Technology

\
www.ntnu.edu ¥

...and It repeats...

LR parser

/ d N\ 7\ \ |
/ T : AN ' ‘ \ / ‘ . : \ / ‘ ‘
‘ 7 / : N\ “
\ Y - (\ //,,,
\ __ //// /

Hey, we got

<

<

another one -
just like it B NTNU - Trondheim

Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

.until...

— The automaton built the stack
— The stack says how deeply into the grammar we’ve gone
— When the final body appears, we reduce the start symbol

LR parser
y ThIS is the AN
— very last time, so —
A—-yC B NTNU - Trondheim
Norwegian University of
— o _ Science and Technology

\
www.ntnu.edu ¥

We're finished!

* Only the start symbol is left on stack, this says that
the statement was syntactically correct

LR parser

%

A Wow’

NTNU - Trondheim
Norwegian University of
o Science and Technology

\
www.ntnu.edu ¥

If you look for the derivation

* Bending notation, space, and time a bit, we can

llustrate it like this
Stack Input Action

- A'AY Shift

y A Shift

A y Shift

YA'AY - Reduce C—¢ (push C)

YATATA®: - Reduce C — yC (pop y,C + push C)
y,y,C - Reduce C — yC (pop y,C + push C)
y,C - Reduce A— yC (pop y,C + push A)
A - Well done, cookies for everyone

NTNU - Trondheim
Norwegian University of

Science and Technology

Here is our riﬂhtmost derivation| INn reverse

Things the example didn't show

* Recognizing the body of a production doesn’t have to
wait until the very end
— Only until it is uniquely determined
* Top-down parsing matches input to productions from
above in the syntax tree ~

...what’s coming?

Already
saw this

I, N, p, u,t
-

Scanning left to right...

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥

Things the example didn't show

* Bottom-up parsing buffers input until it can build
productions on top of productions

First thing reduced Second thing reduced

s e

I, n,p,ut
>

Scanning left to right...

Stop and reduce Next, build more
- sub-trees from the

combinations
bottom
when we can
A B NTNU = Trondheim

. t Norwegian University of
I, N, p,Uu
>

Science and Technology

.

www.ntnu.edu Scanning left to right...

That's the principle of it

* Key ingredients:
— A stack to shift and reduce symbols on
— An automaton that can use stacked history to backtrack its footsteps
— A grammar with one and only one initial production

* The last point is easy, if you have a grammar like
S — iCtSz | iCtSeSz
— It can (somewhat obviously) be augmented like so
S-S
S — iCtSz | iCtSeSz
without changing the language.
— We'll see the purpose of that shortly

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Various schemes

* The LR(k) family of languages can all be parsed with
some kind of shift-reduce parser like this

* The more elaborate your automaton, the more

grammars it can handle
— We’re going to study a few variations of this theme:
SLR, LALR, LR(1)

— They’re easier to understand if we start with one which is actually
bleeminguseless somewhat restrictive, but demonstrates a lot of
general principles

— That is LR(0) automaton construction, up next.

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

