

1

Bottom-up parsing

TDT4205 – Lecture 08

2

Where we are (again)

• Introducing C.F.Grammars, we said that they include
regular languages, and then some more

Type 0

Type 1

Context-Free

Regular

3

Memories of past states
• These classes of languages are recognizable by

(abstract) machines of differing power
– We know the finite automata
– Stack machines (or pushdown automata) are like F. A., but with

added push and pop operations that let them trace the path they
took to a state (and revert to where they’ve been)

Type 0

Type 1

Context-Free

RegularFinite
Automata

Stack
machines

4

What does a top-down parser look like?

• We looked at how to make an LL(1) parsing table, but
not at how to turn it into a program

• Here’s a grammar that’s so simple that we can just
knock the parsing table out by looking at it:

A → xB | yC

B → xB | ε

C → yC | ε

x y $

A A → xB A → yC

B B → xB B→ε

C C → yC C→ε

5

In code

• One way to implement this is to write a function for each nonterminal, and
make them mutually recursive according to the table

parse_A ():
switch(symbol):

case x:

add_tree(x, B)

match (x)

parse_B ()

case y:

add_tree(y, C)

match (y)

parse_C ()

case $:

error()

return

x y $

A A → xB A → yC

B B → xB B→ε

C C → yC C→ε

parse_B():
 switch(symbol):
 case x:
 add_tree(x,B)
 match(x)
 parse_B ()
 case y:
 error()
 case $:
 return
 return

parse_C():
 switch(symbol):
 case x:
 error()
 case y:
 add_tree(y,C)
 match(y)
 parse_C ()
 case $:
 return
 return

6

Function calls stack up

• Parsing ‘y y y’, we get
– The derivation A → y C → y y C → y y y C → y y y

and the function call stack

parse_ACall

Recur:

parse_A

match(y)

parse_A

parse_C

parse_A

parse_C

parse_A

match(y)

match(y)

parse_C

parse_A

parse_C

parse_A

parse_C

parse_C

parse_A

parse_C

parse_C

parse_A

parse_C

parse_C

parse_C

parse_C

parse_C

parse_A

match(y)

parse_C

parse_C

parse_C

parse_A

Return!

Unwind:

parse_C

parse_C

parse_C

parse_A

Return!

parse_C

parse_C

parse_A

parse_C

parse_A parse_A

Return!

Return!

Return!

Finished
!

Time

Call

Call

Return

Return

Return

Return

Call

Call

Call Call

7

Recursive descent vs. stack
• Recursive descent parsing uses the function call

mechanism to implement its stack machine
– It’s hidden in the programming language, but it is there

• LL(1) can also be done with iterations
– Provided that you’re prepared to implement your own stack

• Generally, the need for a stack comes out of the need to
match up beginnings and ends
– Any construct of the sort <start> <thing> <end> where the <thing> can

contain further <start> and <end>s, as in
Expression → (expression)

Statement → { statement }

Comment → (* Comment *)

(/* ML does this, C comments can’t be nested */)

8

Another way to parse

• The “LL” in LL(1) is
– Left-to-right scan
– Leftmost Derivation (always expand the leftmost nonterminal)

• How can we go at it from the right?
– i.e. get LR parsing, to obtain a Rightmost derivation?

• It will require looking deeper into the token stream
before deciding on productions...

9

General operation

• Take the same, silly grammar again

• Instead of making a decision as soon as a terminal
comes along, stack them up

A → xB | yC
B → xB | ε
C → yC | ε

y, y, yWhat’s next?

y
Put it away...

We might be
making an A or a C
here, hold on...

LR parser

10

Keep stacking

• As the state of the internal stack grows, it identifies
more and more of a single production rule

y, yWhat’s next?

y
Put that away too...

We’re definitely
working towards
some C-s here,
how many?y

LR parser

A → xB | yC
B → xB | ε
C → yC | ε

11

Keep stacking

• As the state of the internal stack grows, it identifies
more and more of a single production rule

yWhat’s next?

y
...and again...

We’re definitely
working towards
some C-s here,
how many?y

y

LR parser

A → xB | yC
B → xB | ε
C → yC | ε

12

Enough is enough

• For this grammar, the sequence ends when the input
does

What’s next?

y Ok, time to look at
what we got!

y
y

LR parser

poof

A → xB | yC
B → xB | ε
C → yC | ε

13

Bring out your states
– The stack extension is for memory, the production rules can be

represented by a finite automaton

– It has been watching while we were stacking symbols, so it knows
that we’ve taken a direction where there are no x-s or B-s

y
y
y

LR parser

(purely for illustration...)

This is ε,
use C→ε
(but “backwards”)

A → xB | yC
B → xB | ε
C → yC | ε

14

Reduce body to head
• We’re at the end of the stream, so we’re putting in the

last (rightmost) C nonterminal
– This works out the derivation in reverse order

y
y
y

LR parser

C

Put the new
symbol back on
the stack

A → xB | yC
B → xB | ε
C → yC | ε

15

Next move

y
y

y

LR parser

C

This is the body
of C→yC,
Substitute C and
push

A → xB | yC
B → xB | ε
C → yC | ε

16

...and it repeats...

y

LR parser

C

Hey, we got
another one
just like it

y

A → xB | yC
B → xB | ε
C → yC | ε

17

...until...

y

LR parser

C
This is the
very last time, so
A → y C

– The automaton built the stack
– The stack says how deeply into the grammar we’ve gone
– When the final body appears, we reduce the start symbol

A → xB | yC
B → xB | ε
C → yC | ε

18

We’re finished!

A

LR parser

Wow!

• Only the start symbol is left on stack, this says that
the statement was syntactically correct

A → xB | yC
B → xB | ε
C → yC | ε

19

If you look for the derivation

• Bending notation, space, and time a bit, we can
illustrate it like this

Stack Input Action

- y,y,y Shift

y y,y Shift

y,y y Shift

y,y,y - Reduce C→ε (push C)

y,y,y,C - Reduce C → yC (pop y,C + push C)

y,y,C - Reduce C → yC (pop y,C + push C)

y,C - Reduce A → yC (pop y,C + push A)

A - Well done, cookies for everyone

Here is our rightmost derivation, in reverse

20

Things the example didn’t show

• Recognizing the body of a production doesn’t have to
wait until the very end
– Only until it is uniquely determined

• Top-down parsing matches input to productions from
above in the syntax tree

i, n, p, u, t

Already
saw this

...what’s coming?

Scanning left to right...

21

Things the example didn’t show

• Bottom-up parsing buffers input until it can build
productions on top of productions

i, n, p, u, t

First thing reduced Second thing reduced

i, n, p, u, t

Scanning left to right...

Stop and reduce
combinations
when we can

Scanning left to right...

Next, build more
sub-trees from the
bottom

22

That’s the principle of it

• Key ingredients:
– A stack to shift and reduce symbols on
– An automaton that can use stacked history to backtrack its footsteps
– A grammar with one and only one initial production

• The last point is easy, if you have a grammar like
S → iCtSz | iCtSeSz

– It can (somewhat obviously) be augmented like so

S’ → S

S → iCtSz | iCtSeSz

without changing the language.
– We’ll see the purpose of that shortly

23

Various schemes

• The LR(k) family of languages can all be parsed with
some kind of shift-reduce parser like this

• The more elaborate your automaton, the more
grammars it can handle
– We’re going to study a few variations of this theme:

SLR, LALR, LR(1)
– They’re easier to understand if we start with one which is actually

blooming useless somewhat restrictive, but demonstrates a lot of
general principles

– That is LR(0) automaton construction, up next.

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

