

1

Top-down parsing and LL(1) parser construction

TDT4205 – Lecture 07

2

Parsing by recursive descent

• Take this grammar which models “if”s and “while”s:
P → iCtSz | iCtSeSz | wCdSz

C → c

S → s

• Let’s parse the statement ‘ictsesz’

• In top-down parsing, our starting point is the start symbol, we need to choose a
production

• LL(1) parsing means
– Left-to-right scan
– Leftmost derivation (i.e. always expand leftmost nonterminal)
– 1 symbol of lookahead (this must be enough to select a production)

P

3

We can’t choose

• If we look ahead 1 token and find ‘i’, there are two productions to
choose from

P → iCtSz

P → iCtSeSz

• There is no way to make this choice before seeing more of the token
stream

• Left factoring (prev. lecture) to the rescue!
• Grammar becomes

P → iCtSP’ | wCdSz

P’ → z | eSz

C → c

S → s

4

One step ahead

• Now that there’s only one production which expands P
on ‘i’, we can take it when we see ‘i’

P → iCtSP’

• ...and expand the parse tree according to the derivation

P

i C t S P’

5

Moving along

• Recursive descent means we follow the children of a
tree node through to the bottom, where there must be
a terminal.
– The step we chose predicted that iCtSP’ is coming up, we’re

looking at the ‘i’ in ‘ictsesz’
– Following through to the first child...

...it’s an ‘i’! That matches, throw it away, we now have

‘ctsesz’ left to parse.

P

i C t S P’

6

Backtrack, and repeat

• Leaving that behind, the next child in the tree is a
nonterminal
– That can’t match any input, so we need to pick a production again

P

C t S P’i

7

Pick the next production

• There’s not a lot of choice on how to expand C, so it
could be clear already
– Nevertheless, look at the input ‘ctsesz’, lookahead is now ‘c’

– Pick production C → c, and expand the tree accordingly

P

C t S P’i

c

8

Verify another terminal

• We need to go all the way to the bottom before
backtracking...
– ...but we find the ‘c’ that was expected there

– Away it goes, remaining input is ‘tsesz’

P

t S P’i

c

C

9

‘t’ disappears as well

• It was already predicted by the first production:
– Toss it out, ‘sesz’ remains

P

t S P’i C

c

10

The next nonterminal is S

• Lookahead character ‘s’ drives the choice of S→s

– Verify ‘s’, leave ‘esz’ and proceed to P’

P

S P’i C

c

t

s

P

P’i C

c

t

s

S

11

There is a choice here

• P’ expands in two ways
P’ → z

P’ → eSz
– This is our postponed selection, we can choose now because the

lookahead symbol (‘e’ from remaining ‘esz’) tells us we need
alternative #2:

P

i C

c

t

s

S P’

e S z

12

Continue in the same way

• You’ll have to
– Verify ‘e’, and backtrack (leaving ‘sz’ on input)

P

i C

c

t

s

S P’

S zs

13

Continue in the same way

• You’ll have to
– Verify ‘e’, and backtrack (and leave ‘sz’ on input)
– Expand another S → s, verify the terminal (leaving ‘z’ on input)

P

i C

c

t

s

S P’

zs

s

S

14

The statement is valid

• You’ll have to
– Verify ‘e’, and backtrack (and leave ‘sz’ on input)
– Expand another S → s, verify the terminal (leaving ‘z’ on input)
– Verify the final ‘z’, and backtrack to find no further children
– The parse tree is finished, and since that was all the input, it’s ok.

P

i C

c

t

s

S P’

zs S

s

Finished!

15

That is how it works

• Predictive parsing by recursive descent
– Starts from the start symbol (top)
– Verifies terminals
– Picks a unique production for nonterminals based on the lookahead
– Expands the syntax tree by productions, and recursively treat the new sub-

tree in the same way

• This requires that the grammar is suitable, but we can adapt
them somewhat
– Left factor where a common lookahead prevents picking the right production
– Eliminate left-recursive productions
– We only saw left factoring in action so far, but let’s do one another grammar

16

We’re aiming for a table

• As with DFA, an algorithm needs a table where it can make
decisions based on indexing (nonterminal, terminal) pairs and
find a single production

• To make that table, it’s a good idea to determine
– What can the strings derived from a nonterminal begin with?
– Which nonterminals can vanish, so that the lookahead symbol is actually part of the

next production to choose?
– What can come directly after a nonterminal that can vanish?

(where ‘vanish’ means that there’s a production X→ε, so that nonterminal X
disappears from the intermediate form in the derivation without consuming any
characters from the input token stream)

17

Here’s another grammar

S → u B D z

B → B v | w

D → E F

E → y | ε

F → x | ε

– It doesn’t model anything in particular, it’s here to be short and
sweet

18

FIRST

• The set FIRST(α) is the set of terminals that can appear to the left in α
α is really any ol’ combination of terminals and nonterminals

• If we tabulate FIRST for all the heads in the grammar,
FIRST(S) = {u} (u begins the only production)

FIRST(B) = {w} (however many times B→ Bv is taken, w appears on the left in the
end)

FIRST(E) = {y} (only production that derives any terminal)

FIRST(F) = {x} (ditto)

and finally,

FIRST(D) = {y,x}
y because D → E F → y F

x because D → E F → F → x (E can disappear by E → ε)

19

Nullablility

• A nonterminal is nullable if it can produce the empty string (in
any number of steps)
– The Dragon book denotes this by putting ε in the FIRST set
– I denote it by keeping a separate record, because I like to
– You can choose for yourself, we can read both notations

• In short order,
nullable (S) = no (there are terminals in the only production)

nullable (B) = no (there are terminals in both productions)

nullable (E) = yes (it produces E→ε)

nullable (F) = yes (it produces F→ε)

nullable (D) = yes (D → E F → F → ε)

20

FOLLOW

• FOLLOW (N) for nonterm. N is the set of terminals that can appear
directly to its right
– In order to find these, you have to examine all the places N appears in production bodies,

and find the terminals directly to its right
– If it has a nonterminal on its right, you have to follow all its productions too, and find out what

can come up instead of it
• That will be its FIRST set

– If it has a nonterminal that can vanish to its right, you have to look at what comes
afterwards…

– ...and in general, collect all the terminals that can appear to the right in one way or another

• This is a little trickier than FIRST, but it can be done if you concentrate
• If you don’t like to concentrate, you can also slavishly follow the rules

beginning at the bottom of p. 221

21

For our grammar

– FOLLOW(S) = {$} (the end of input)
– FOLLOW(B) = {v,x,y,z} taken from the derivations

S → uBDz → uBvDz

S → uBDz → uBEFz → uBFz → uBxz

S → uBDz → uBEFz → uByFz

S → uBDz → uBEFz → uBFz → uBz

– FOLLOW(D) = {z} (from S → uBDz)
– FOLLOW(E) = {x,z}taken from the derivations

S → uBDz → uBEFz → uBExz

S → uBDz → uBEFz → uBEz

– FOLLOW(F) = {z} (from S → uBDz → uBEFz)

22

Two rules

• Armed with the FIRST, FOLLOW and nullable
information, consider every production X→α in the
grammar, and apply two rules:
– Enter the production X→α at (X,t) where t is in FIRST(α)
– When α →* ε, enter the production X→α at (X,t) where t is in

FOLLOW(X)

23

Trying out rule #1

• With the grammar that we have, the first rule gives
the table

u w v x y z

S S → uBDz

B B→ w
B→ Bv

D D→ EF D→EF

E E → y

F F → x

24

Houston, we have a... left recursion

• This will not do, expanding B on lookahead ‘w’
requires a choice we can’t make

u w v x y z

S S → uBDz

B B→ w
B→ Bv

D D→ EF D→EF

E E → y

F F → x

25

Fix the grammar

• Eliminating left recursion gives us
S → uBDz

B → w B’

B’ → v B’ | ε

D → E F

E → y | ε

F → x | ε

• Update the FIRST, FOLLOW, nullable sets after the change:
FIRST(B) = {w}, FOLLOW(B) = {x,y,z}, nullable(B) = no

FIRST(B’) = {v}, FOLLOW(B’) = {x,y,z}, nullable(B’) = yes

26

Try rule #1 again

• This looks better:
u w v x y z

S S → uBDz

B B → wB’

B’ B’ → vB’

D D → EF D→ EF

E E → y

F F → x

27

Adding rule #2

• Where nonterms are nullable, insert at FOLLOW
u w v x y z

S S → uBDz

B B → wB’

B’ B’ → vB’ B’ → ε B’ → ε B’ → ε

D D → EF D→ EF D→ EF

E E → ε E → y E → ε

F F → x F → ε

28

Now we have an LL(1) parsing table

• There is only one rule to choose from any pair of
(nonterminal, terminal), so the tree can be built
deterministically by following the method from the first
example
– Pick productions for nonterminals by looking them up in the table

• Parse a sample statement like uwvvxz if you like

• Try to think of how you would structure a program
that works the same way

29

Why we cover this

• Bottom-up parsers are a handful to construct, it’s a job best
left for an automatic generator

• Top-down parsers work on a simple principle, those are
doable by hand
– At least as long as we stick to LL(1), longer lookaheads like LL(2) make for

tables that have a column for every pair of terminals

• We’ll use a bottom-up generator in the practical work
• You should also know how to make a top-down one in the

theoretical work
– So as to make an informed choice if you need to parse things

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

