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Top-down parsing and LL(1) parser construction

TDT4205 – Lecture 07
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Parsing by recursive descent

• Take this grammar which models “if”s and “while”s:
P → iCtSz | iCtSeSz | wCdSz

C → c

S → s

• Let’s parse the statement ‘ictsesz’

• In top-down parsing, our starting point is the start symbol, we need to choose a 
production

• LL(1) parsing means
– Left-to-right scan
– Leftmost derivation (i.e. always expand leftmost nonterminal)
– 1 symbol of lookahead (this must be enough to select a production)

P
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We can’t choose

• If we look ahead 1 token and find ‘i’, there are two productions to 
choose from

P → iCtSz

P → iCtSeSz

• There is no way to make this choice before seeing more of the token 
stream

• Left factoring (prev. lecture) to the rescue!
• Grammar becomes

P → iCtSP’ | wCdSz

P’ → z | eSz

C → c

S → s
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One step ahead

• Now that there’s only one production which expands P 
on ‘i’, we can take it when we see ‘i’

P → iCtSP’

• ...and expand the parse tree according to the derivation

P

i C t S P’
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Moving along

• Recursive descent means we follow the children of a 
tree node through to the bottom, where there must be 
a terminal.
– The step we chose predicted that iCtSP’ is coming up, we’re 

looking at the ‘i’ in ‘ictsesz’
– Following through to the first child...

...it’s an ‘i’! That matches, throw it away, we now have

‘ctsesz’ left to parse.

P

i C t S P’
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Backtrack, and repeat

• Leaving that behind, the next child in the tree is a 
nonterminal
– That can’t match any input, so we need to pick a production again

P

C t S P’i
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Pick the next production

• There’s not a lot of choice on how to expand C, so it 
could be clear already
– Nevertheless, look at the input ‘ctsesz’, lookahead is now ‘c’

– Pick production C → c, and expand the tree accordingly

P

C t S P’i

c



  

8

Verify another terminal

• We need to go all the way to the bottom before 
backtracking...
– ...but we find the ‘c’ that was expected there

– Away it goes, remaining input is ‘tsesz’

P

t S P’i

c

C
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‘t’ disappears as well

• It was already predicted by the first production:
– Toss it out, ‘sesz’ remains

P

t S P’i C

c
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The next nonterminal is S

• Lookahead character ‘s’ drives the choice of S→s

– Verify ‘s’, leave ‘esz’ and proceed to P’

P

S P’i C

c

t

s

P

P’i C

c

t

s

S
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There is a choice here

• P’ expands in two ways
P’ → z

P’ → eSz
– This is our postponed selection, we can choose now because the 

lookahead symbol (‘e’ from remaining ‘esz’) tells us we need 
alternative #2:

P

i C

c

t

s

S P’

e S z
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Continue in the same way

• You’ll have to
– Verify ‘e’, and backtrack (leaving ‘sz’ on input)

P

i C

c

t

s

S P’

S zs
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Continue in the same way

• You’ll have to
– Verify ‘e’, and backtrack (and leave ‘sz’ on input)
– Expand another S → s, verify the terminal (leaving ‘z’ on input)

P

i C

c

t

s

S P’

zs

s

S
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The statement is valid

• You’ll have to
– Verify ‘e’, and backtrack (and leave ‘sz’ on input)
– Expand another S → s, verify the terminal (leaving ‘z’ on input)
– Verify the final ‘z’, and backtrack to find no further children
– The parse tree is finished, and since that was all the input, it’s ok.

P

i C

c

t

s

S P’

zs S

s

Finished!
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That is how it works

• Predictive parsing by recursive descent
– Starts from the start symbol (top)
– Verifies terminals
– Picks a unique production for nonterminals based on the lookahead
– Expands the syntax tree by productions, and recursively treat the new sub-

tree in the same way

• This requires that the grammar is suitable, but we can adapt 
them somewhat
– Left factor where a common lookahead prevents picking the right production
– Eliminate left-recursive productions
– We only saw left factoring in action so far, but let’s do one another grammar
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We’re aiming for a table

• As with DFA, an algorithm needs a table where it can make 
decisions based on indexing (nonterminal, terminal) pairs and 
find a single production

• To make that table, it’s a good idea to determine
– What can the strings derived from a nonterminal begin with?
– Which nonterminals can vanish, so that the lookahead symbol is actually part of the 

next production to choose?
– What can come directly after a nonterminal that can vanish?

(where ‘vanish’ means that there’s a production X→ε, so that nonterminal X 
disappears from the intermediate form in the derivation without consuming any 
characters from the input token stream)
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Here’s another grammar

S → u B D z

B → B v | w

D → E F

E → y | ε

F → x | ε

– It doesn’t model anything in particular, it’s here to be short and 
sweet
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FIRST

• The set FIRST(α) is the set of terminals that can appear to the left in α
α is really any ol’ combination of terminals and nonterminals

• If we tabulate FIRST for all the heads in the grammar,
FIRST(S) = {u} (u begins the only production)

FIRST(B) = {w} (however many times B→ Bv is taken, w appears on the left in the 
end)

FIRST(E) = {y} (only production that derives any terminal)

FIRST(F) = {x} (ditto)

and finally,

FIRST(D) = {y,x}
y because D → E F → y F

x because D → E F → F → x (E can disappear by E → ε)
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Nullablility

• A nonterminal is nullable if it can produce the empty string (in 
any number of steps)
– The Dragon book denotes this by putting ε in the FIRST set
– I denote it by keeping a separate record, because I like to
– You can choose for yourself, we can read both notations

• In short order,
nullable (S) = no (there are terminals in the only production)

nullable (B) = no (there are terminals in both productions)

nullable (E) = yes (it produces E→ε)

nullable (F) = yes (it produces F→ε)

nullable (D) = yes (D → E F → F → ε)
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FOLLOW

• FOLLOW (N) for nonterm. N is the set of terminals that can appear 
directly to its right
– In order to find these, you have to examine all the places N appears in production bodies, 

and find the terminals directly to its right
– If it has a nonterminal on its right, you have to follow all its productions too, and find out what 

can come up instead of it
• That will be its FIRST set

– If it has a nonterminal that can vanish to its right, you have to look at what comes 
afterwards…

– ...and in general, collect all the terminals that can appear to the right in one way or another

• This is a little trickier than FIRST, but it can be done if you concentrate
• If you don’t like to concentrate, you can also slavishly follow the rules 

beginning at the bottom of p. 221
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For our grammar

– FOLLOW(S) = {$} (the end of input)
– FOLLOW(B) = {v,x,y,z} taken from the derivations

S → uBDz → uBvDz

S → uBDz → uBEFz → uBFz → uBxz

S → uBDz → uBEFz → uByFz

S → uBDz → uBEFz → uBFz → uBz

– FOLLOW(D) = {z} (from S → uBDz)
– FOLLOW(E) = {x,z}taken from the derivations

S → uBDz → uBEFz → uBExz

S → uBDz → uBEFz → uBEz

– FOLLOW(F) = {z} (from S → uBDz → uBEFz)
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Two rules

• Armed with the FIRST, FOLLOW and nullable 
information, consider every production X→α in the 
grammar, and apply two rules:
– Enter the production X→α at (X,t) where t is in FIRST(α)
– When α →* ε, enter the production X→α at (X,t) where t is in 

FOLLOW(X)
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Trying out rule #1

• With the grammar that we have, the first rule gives 
the table

u w v x y z

S S → uBDz

B B→ w
B→ Bv

D D→ EF D→EF

E E → y

F F → x
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Houston, we have a... left recursion

• This will not do, expanding B on lookahead ‘w’ 
requires a choice we can’t make

u w v x y z

S S → uBDz

B B→ w
B→ Bv

D D→ EF D→EF

E E → y

F F → x
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Fix the grammar

• Eliminating left recursion gives us
S → uBDz

B → w B’

B’ → v B’ | ε

D → E F

E → y | ε

F → x | ε

• Update the FIRST, FOLLOW, nullable sets after the change:
FIRST(B) = {w}, FOLLOW(B) = {x,y,z}, nullable(B) = no

FIRST(B’) = {v}, FOLLOW(B’) = {x,y,z}, nullable(B’) = yes
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Try rule #1 again

• This looks better:
u w v x y z

S S → uBDz

B B → wB’

B’ B’ → vB’

D D → EF D→ EF

E E → y

F F → x
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Adding rule #2

• Where nonterms are nullable, insert at FOLLOW
u w v x y z

S S → uBDz

B B → wB’

B’ B’ → vB’ B’ → ε B’ → ε B’ → ε

D D → EF D→ EF D→ EF

E E → ε E → y E → ε

F F → x F → ε
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Now we have an LL(1) parsing table

• There is only one rule to choose from any pair of 
(nonterminal, terminal), so the tree can be built 
deterministically by following the method from the first 
example
– Pick productions for nonterminals by looking them up in the table

• Parse a sample statement like uwvvxz if you like

• Try to think of how you would structure a program 
that works the same way
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Why we cover this

• Bottom-up parsers are a handful to construct, it’s a job best 
left for an automatic generator

• Top-down parsers work on a simple principle, those are 
doable by hand
– At least as long as we stick to LL(1), longer lookaheads like LL(2) make for 

tables that have a column for every pair of terminals

• We’ll use a bottom-up generator in the practical work
• You should also know how to make a top-down one in the 

theoretical work
– So as to make an informed choice if you need to parse things
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