NTNU - Trondheim
Norwegian University of

Science and Technology

Lexical analysis roundup

LY
www.ntnu.edu e TDT4205 - Lecture #5

A}

What we have done

* Described regex

* Converted regex — NFA
* Converted NFA — DFA
* Minimized DFA

* Simulated DFA

* Suggested that creating the simulator can be left to a
scanner-generator program

NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu ¥

The original

* In the beginning, there was one called Lex which wrote
scanners in C

* Its format and idea is sort of a template for a whole family

tree of successors
flex (still targets C, companion to GCC, we’ll take it)
JFlex (Java)
PLY (Python)
C# Flex (take a guess)
Alex (Haskell)
gelex (Eiffel)

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Specification format

Lex files are suffixed *.I , and contain 3 sections
<declarations>
%%
<translation rules>
%%
<functions>
Declaration and function sections can contain regular C code

that makes its way into the final product
Translation rules are compiled into a function called yylex ()
The output is a C file you can read if you like

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Declarations

* The declaration section also admits some directives
to Lex itself, so any C you wish to include is
contained between %{ and %}

* The auxiliary functions section is just plain ol source
code

* The translation rules are regular expressions paired
with basic blocks (actions)

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥

As an example

* We can define some regex without attaching much of
a language
[\n\tWA]
if
then
endif
end
[0-9]+

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Reacting to matched text

* \We can attach actions to take on match
[\n\t\Ww\] {/* Do nothing, this is whitespace */ }

if { return IF; }
then { return THEN; }
endif { return ENDIF; }
end { return END; }

[0-9]+ { return INT; }

NTNU - Trondheim
Norwegian University of
Science and Technology

%
www.ntnu.edu ¥

That needs token definitions

%o{
#include <stdio.h> <« Thisis plain C
enum { IF, THEN, ENDIF, INT, END }; (mmd space in margir
Yo}
%%
[\n\t\w\] {/* Do nothing, this is whitespace */ }
if {return IF; }
then { return THEN; }
endif { return ENDIF; }
end { return END; }

[0-9]+ { return INT,; }

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

It won’t run without a main function

(defs)
%%
rules .
o Call the generated scan function
int main () {
int token = 0;
while (token != END) {
shon =yt £ Do something with each token
switch (token)
case IF: prlntf('Found if\n"); break;
case THEN: printf ("Found then\n"); break;
case ENDIF: printf ("Found endif\n"); break;
case INT: printf ("Found integer %s\n", yytext); break;
case END: printf ("Hanging up... bye\n"); break;

NTNU - Trondheim
Norwegian University of

Science and Technology

L

www.ntnu.edu

Lex can stand alone

* If you have a simple program that just needs a
scanner, and you miss regex, it can fit in a Lex

specification
* I've put the examples online, we can run them

NTNU - Trondheim
Norwegian University of

Science and Technology

%
www.ntnu.edu ¥

Lex can talk about states

* Some things are easier if you can name a sub-automaton
and treat it separately

* Strings come to mind, all the things you can put between
and ” make a foofy regex
— Putting
%state STRING
in the declarations section let you talk about a state called that
— Specifying states in the regular expressions,

1

<INITIAL>Y
and
<STRING>Y’
can match quotation marks in separate contexts by different rules
(here, the opening and closing quotation marks) B :H:;,T.:{?ﬂ‘f?ﬁfﬂf
Science and Technology

\
www.ntnu.edu ¥

Talking about states

* Using those mechanisms, named states can appear
In the translation rules

<INITIAL>if { printf ("Found "if\n"): } Set state
<INITIAL>end { printf ("Found 'end\n"); return O; }
Stop <INITIAL>\" { printf ("Found string: "); BEGIN(STRING); }

before —»<STRING>\" { printf ("\n"): BEGIN(INITIAL): }
next “ <STRING>. { printf ("%c,", yytext[0]); }

|

Match any character (regex. extension “." matches anything)

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu ¥

This introduces a sub-automaton

* Something along these lines:

ﬁ [any character]
STRING

>

" [otherrules]

\T\IU Tr ndheim
No g iversity of
Scie lT chn lé,
LY
www.ntnu.edu ¥

Lex can interface with other code

* Specifically, it pairs well with YACC
(Yet Another Compiler-Compiler)

* YACC generates syntax analyzers (our next topic)
— It can define tokens for Lex specifications to use
— It knows to call yylex for the next token

* That is how we will make use of the two together

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Bits and bobs we skipped in chapter 3:
Longest match

* When there are multiple accepting states, the DFA
simulation can’t guess whether to take the first
match, or continue in the hope of finding another

 Common rule is that the longest match wins, and the
input-recording buffer rolls back if input leads the DFA
astray

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

Bits and bobs we skipped in chapter 3:
Dead states

— Technically, every DFA state goes somewhere on every symbol

— You can trap it in a state that doesn’t accept, and transitions to itself
on every symbol

— It messes up the drawings (which we want because they’re clear):

e e ‘m
a

— It's a detail that matters more to scanner generator authors than to
users, but you can read about it.
B NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu ¥

Bits and bobs we skipped in chapter 3:
Direct regex — DFA translation (3.9.1-3.9.5)

* This method has a touch of syntax analysis to it

* We're going to spend quite enough time on syntax
analysis, and | think the relevant principle comes
through more clearly there

* You can look at it for continuity, and even return to it
after we've done LL(1) parsers

— I'm not going to bug you about the details of this algorithm
— You should know that it exists, and converts regex to DFA

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu ¥

That's a wrap

* Onward, to the charms of syntactic analysis!

NTNU - Trondheim
Norwegian University of
Science and Technology

%
www.ntnu.edu ¥

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

