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Lexical analysis: Regular Expressions and NFA

TDT4205 – Lecture #3
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So, we have this DFA

• It can tell you whether or not you have an integer with 
an optional, fractional part
– Just point at the first state and the first letter, and follow the arcs

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)
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Common things in lexemes

• Sequences of specific parts
– These become chains of states in the graph

• Repetition
– This becomes a loop in the graph

• Alternatives
– These become different paths that separate and join
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Some notation

• An alphabet is any finite set of symbols
– {0,1} is the alphabet of binary strings

– [A-Za-z0-9] is the alphabet of alphanumeric strings (English letters)

• Formally speaking, a language is a set of valid strings 
over an alphabet
– L = {000, 010, 100, 110} is the language of even, positive binary 

numbers smaller than 8

• A finite automaton accepts a language
– i.e. it determines whether or not a string belongs to the language 

embedded in it by its construction
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Things we can do with 
languages
• They can form unions:

– s Є L1 υ L2 when s Є L1 or s Є L2

• We can concatenate them:
– L1L2 = { s1s2 | s1 Є L1 and s2 Є L2 }

• Concatenating a language with itself is a multiplication of sorts 
(Cartesian product)
– LLL = { s1s2s3 | s1 Є L and s2 Є L and s3 Є L} = L3

• We can find closures
– L* = υ i=0,1,2,... Li (Kleene closure) ← sequences of 0 or more strings from L

– L+ = υ i=1,2,... Li (Positive closure) ← sequences of 1 or more strings from L
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Regular expressions
(“regex”, among friends)

• We denote the empty string as ε            (epsilon)
• The alphabet of symbols is denoted Σ (sigma)
• Basis

– ε is a regular expression, L(ε) is the language with only ε in it
– If a is in Σ, then a is also a regular expression (symbols can simply be written into the expression), L(a) is the 

language with only a in it

• Induction
– If r1 and r2 are regular expressions, then r1 | r2 is a reg.ex. for L(r1) υ L(r2)  

(selection, i.e. “either r1 or r2”)

– If r1 and r2 are regular expressions, then r1r2 is a reg.ex. for L(r1)L(r2)

(concatenation)
– If r is a regular expression, then r* denotes L(r)*

(Kleene closure)
– (r) is a regular expression denoting L(r)

(We can add parentheses)
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DFA and regular expressions
(superficially)

• We already noted that this thing recognizes a 
language because of how it’s constructed:

• There’s a corresponding regular expression:
[0-9] [0-9]*  ( . [0-9]* )? 

1 2 3
[0-9]

[0-9] [0-9]

‘.’
(start)

Optional, because state 2 accepts
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Now there are 3 views

• Graphs, for sorting things out

• Tables, for writing programs that do what the graph 
does

• Regular expressions, for generating them 
automatically
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Regular languages

• All our representations show the same thing
– We haven’t shown how to construct either one from the other, but 

maybe you can see it still.

• The family of all the languages that can be 
recognized by reg.ex. / automata are called the 
regular languages

• They’re a pretty powerful programming tool on their 
own, but they don’t cover everything

(more on that later)
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Combining automata

• Suppose we want a language which includes both of 
the words {“all”, “and”}

• Separately, these make simple DFA:

a l l

a n d
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Putting them together

• The easiest way we could combine them into an 
automaton which recognizes both, is to just glue their 
start and end states together:

a
l l

a
n

d
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This is slightly problematic

• The simulation algorithm from last time doesn’t work 
that way:
– Starting from state 0 and reading ‘a’, the next state can be either 1 

or 2

– If we went from 0 to 1 on an ‘a’ and next see an ‘n’, we should have 
gone with state 2 instead

– If we see an ‘a’ in state 0, the only safe bet against having to back-
track is to go to states 1 and 2 at the same time...

0

1a
l l

2a
n

d



  

13

The obvious solution

• Join states 1 and 2, thus postponing the choice of 
paths until it matters:

• Now the simple algorithm works again (yay!)

• ...but we had to analyze what our two words have in 
common (how general is that?)

a
l

l

n d
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Non-deterministic Finite Automata

• One way to write an NFA is to admit multiple 
transitions on the same character

• Another is to admit transitions on the empty string, 
which we already denoted as “ε” (epsilon)

• These are equivalent notations for the same idea:

a
l l

a
n

d

a l l

a n d

ε

ε

ε

ε
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Relation to regular expressions

• NFA are easy to make from regular expressions

• The pair of words we already looked at can be 
recognized as the regex ( all | and )
– (equivalently,  a( ll | nd )for the deterministic variant, but 

never mind for the moment)

• We can easily recognize the sub-automata from each 
part of the expression: 

a l l

a n d

ε

ε

ε

ε

Machine #1

Machine #2
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What can a regex contain?

• Let’s revisit the definition:
1) a character stands for itself    (or epsilon, but that’s invisible)

2) concatenation R1 R2

3) selection               R1 | R2

4) grouping               (R1)

5) Kleene closure R1*

• We can show how to construct NFA for each of these, all we need 
to know is that R1, R2  are regular expressions

• Notice that a DFA is also an NFA
– It just happens to contain zero ε-transitions

– More properly put, DFA are a subset of NFA
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1) A character

• Single characters (and epsilons) in a regex become 
transitions between two states in an NFA

• Working from ( all | and ), that gives us

a l l

a n d

Now we have a bunch of tiny Rs to combine
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2) Concatenation

• Where R1R2 are concatenated, join the accepting 
state of R1 with the start state of R2:

• In our example:

a l l

a n d

R
1

R
2

R
1

R
2

R
1

R
2



  

19

3) Selection

• Introduce new start+accept states, attach them using 
ε-transitions (so as not to change the language):

R
1

R
2

R
1

R
2

R
1

R
2

R
1

R
2

ε

ε ε

ε
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(That completes the example)

• It’s exactly what we did before:

l

a n d

ε

ε

ε

ε

a l

R
2

R
1
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4) Grouping

• Parentheses just delimit which parts of an expression 
to treat as a (sub-)automaton, they appear in the form 
of its structure, but not as nodes or edges

• cf. how the automaton for (all|and)will be exactly 
the same as that for ((a)(l)(l))|((a)(n)(d))
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5) Kleene closure

• R1* means zero or more concatenations of R1

• Introduce new start/accept states, and ε-transitions to
– Accept one trip through R1

– Loop back to its beginning, to accept any number of trips

– Bypass it entirely, to accept zero trips

R
1

R
1 R

1
R

1

ε

ε

ε ε
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Q.E.D.

• We have now proven that an NFA can be constructed from 
any regular expression
– None of these maneuvers depend on what the expressions contain

• It’s the McNaughton-Thompson-Yamada algorithm
(Bear with me if I accidentally call it “Thompson’s construction”, it’s the same 
thing, but previous editions of the Dragon used to short-change McNaughton 
and Yamada)

• But wait… what about the positive closure, R1
+?

– It can be made from concatenation and Kleene closure, try it yourself
– It’s handy to have as notation, but not necessary to prove what we wanted 

here
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One lucid moment

• We’ve talked about closures
– They are the outcome of repeating a rule until the result stops 

changing (possibly never)

• We’ve taken a notation and attached general rules to 
all its elements, one at a time
– By induction, this guarantees that we cover all their combinations

– That is the trick of a “syntax directed definition”

• Hang on to these ideas
– They will appear often in what lies ahead of us


	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

