

1

TDT4205 Overture

TDT4205 Lecture #1

2

Hello, world

• I am Jan Christian Meyer
(Jan.Christian.Meyer@ntnu.no, http://www.idi.ntnu.no/~janchris)

• I graduated from this very institution in 2004 (and again in 2012)

• My science is number crunching, I am not actually a
compiler guru of the highest order

(...but I use them a lot, and think they are very interesting...)

• TDT4205 track record:
– Teaching Assistant 2006-2009
– Assistant Prof. 2010-2011
– Associate Prof. 2015- ?

(in other words, I can’t tell you about all the latest
inventions, but it will do for an introduction to our topic...)

http://www.idi.ntnu.no/

3

In the beginning...

• ...there was Charles Babbage's analytical engine

• This doohickey was never finished, but Ada Lovelace was hired to
translate a document on its construction

• She helpfully added notes on a method to make it calculate
Bernoulli numbers, suggested that it might read punch cards, and
be capable of composing music

• 170 years later, this sort of activity goes by the name of
programming, that is
– dressing up what the machine should do as some sort of

calculation
– translating it into a form where it makes the ACME

device do what we want it to

4

Automating the manual labor

• Ada had to translate all the variables and numbers into
machine state herself, and you would need to understand
that mapping in order to provide input and read your
answer.

• The second big idea came a century or so later, in Alan
Turing's notion that a general device could be made to
compute descriptions of specific ones, stored in an
appropriate format.

• This raises the level of programmability, as we can hatch
some systematic scheme in order to find suitable machine-
friendly equivalents of vague ideas like “6”, “x”, and
“finished”.

• If it's systematic enough, we can even make a
program out of that scheme itself...

5

Providing abstractions

• That's where programming languages enter the picture.
• Quoting Babbage himself:

“On two occasions I have been asked, – "Pray, Mr. Babbage, if you put into
the machine wrong figures, will the right answers come out?" […]
I am not able rightly to apprehend the kind of confusion of ideas that could
provoke such a question.”

• The source of such confusion is more obvious with the
complexity of more modern computers.

• Instead of turning gears, we are given little animated pixies
who sometimes appear to understand which files to search
for. Such illusions make it easy to forget that it's just a
machine.

6

The first compiler

• In 1952, Grace Murray Hopper was working on the
ENIAC system, and realized that some sequences of
operations were useful in several of its programs

• This led her to develop the A-0 programming system
(“Arithmetic language version 0”)
– Programs consisted of strings of numbers that identified locations of

subroutines on storage tape, followed by their arguments
– i.e. a statement like “sqrt (average (10, 15))” might have read like

“231 10 15 61” if avg. and sqrt. were at tape locations 231 and 61, so
that A0 could look them up and insert the logic

– It was more like what we call a linker now, but it began the
substitution of re-usable code words for fixed functions

– People at the time were skeptical that a computer could
even generate a program for itself to run

7

Prettier notations

• The possibility of substituting English-like words for
numbers was not lost on people
– Grace herself went on to work on what was to become COBOL
– FORTRAN (“Formula Translator”) also emerged in this spirit

• The first FORTRAN compiler took 18 years of work
– Not from start to finish, but as the time multiplied by the # of people

• More structured approaches to language description
were coming out of linguistics around the same time
– Further programming languages benefited from better definitions of

words and grammar

8

Our first topic

• We will spend the first part of our course on this
science of notations
– How to recognize words composed of letters
– How to recognize statements composed of words
– How to recognize programs composed of statements
– How to store them in a way that makes it clear how

“sqrt (average (10, 15))” can be the same as “231 10 15 61”
(or any other machine-specific choice of operations)

• This is a compiler’s front-end
– There are a bunch of formalisms and algorithms attached
– Following those allow us to use tools that are based on them
– It sometimes looks harder than necessary, but they help when things

begin to get complicated

9

Machine-specific operations

• When Grace’s programming system represented its
operations as tape indices, it obviously had to relate to
the layout of the corresponding tapes

• Ada’s programs were similarly linked to the specific
contraption, except its operations were built into nuts
and bolts

• The operations we have are a combination:
– Processor assembly instructions are wired in hardware
– Operations that interact with the outside world go through the

operating system

10

Our second topic

• In order to sensibly discuss how an abstract program
can be run on a physical computer, we need to dissect
how these hardware and software parts interact

• This is part of a compiler’s back-end

11

Automatic improvements

• In 1966, Frances Elizabeth Allen recognized that many
useful ways to manipulate programs could be done
automatically, by
– Re-interpreting the program logic as graphs in various forms
– Applying graph theory to those

• Apart from translating programs to machine code,
people also expect a compiler to find a better
translation than they could

• This is (obviously) only worth anything if the improved
program still does what it was intended to do

12

The meaning of a program

• What a program is intended to accomplish can only be
implicitly written into it
– Computers can’t know what “an average” is any more than a clock

can know what time it is
– Still, we expect the compiler to recognize that (a+b)/2 is the same as

(a/2) + (b/2) (...at least when it actually is :))

• The assumptions about meaning are embedded in the
definitions of our programming languages

• Compilers must be made so that they systematically
maintain the assumptions without understanding them

13

Our third topic

• We will spend the second part of our course on
identifying what kind of program ideas that can be
turned into rules with no exceptions
– It’s really quite a useful list
– Spoiler alert: it’s still not quite as many as people tend to expect

14

Why we are here

• The illusions are so effective that we teach programming in terms
of them.
– It's perfectly possible to be a productive programmer while quietly

believing that numbers and functions exist somewhere inside the box
– In fact, accepting this sort of fairytale massively improves productivity

• In a great attack against productivity, this course is about
exposing the illusion, and spoiling the trick. :)

• Knowing how it works doesn't mean you can't enjoy looking at an
illusion – abstractions are useful tools to a programmer

• Knowing what you are looking at fundamentally alters the way
you see it, and that's what we are after.

• In other words, even if you never touch the internals of a compiler
again, there's an education in seeing how the
abstractions evaporate under scrutiny.

15

As an aside:

(Not why we are here)
• Mildly to my regret, one recent class (ultimately) let me know that

compiler construction has a reputation for being terrifyingly difficult
– It’s easy to imagine why; the book is full of algorithms and tables and

α-s and ω-s and Σ-s
– If we were to go through this with zero tolerance for any misplaced ω,

it would become a near impossible memorization exercise
– Let’s not do that, fear of mistakes ruins the learning process

• The point of covering the algorithms is not to recite them on command
– It is to understand what they do, so that you can recognize them in

action

• Our subject is hard in the sense that it takes a lot of patient effort
– I maintain that it does not require award-winning mental powers, and

offer my own lackluster brain as evidence.

16

As an aside:

Why we are here
(in the auditorium)

• The book contains enough meticulous detail for a
programmer’s reference volume
– Some people like to read details and gain an intuition
– Others like to start from an intuition and read details
– Others still jump between details and concepts in their own manner

• My goal with these lectures is to support the intuitive angle
– I think that’s how I can complement the text, nobody needs me to

read aloud from the syllabus

• Hopefully, attending will save you some time and effort
– You can judge for yourself whether or not I succeed; I am not

prepared to play finger-wagging schoolmaster for an adult audience

17

Back on track:

What is a compiler?

• It's a program which takes another program as input,
and translates it into a third program, often so that it
may be run on some sort of machine.

• i.e., all it does is take whatever the programmer has
written in some language, and write it down in some
other language.

• As alluded to, it's an automatic translator of sorts, but
let's not call it that just yet.

18

What is an interpreter?

• It's a program which takes another program as input,
and translates it into a third program, running it on
some sort of machine.

• i.e., all it does is take whatever the programmer has
written in some language, and provide a running
translation into some other language.

• This is also an automatic translator of sorts. With first
appearances, the only difference from what we just
called 'a compiler' is that nothing is written down, but
we could surely make that happen too.

• There is a little more to it than that, though.

19

What is the difference?

• In brief, the relation between source and target languages.
• The compiler has its work cut out at the time you decide

that the program is ready. After it's finished, the result
should be somehow self-contained with respect to the
target language

• This means that no aspects of the source language are left,
all behavior is expressed in the target language

• Interpreters have the luxury of knowing the state of all
values and such, traded for the difficulty of not having read
the entire source program before it stops.

20

To add to the confusion

• Adding to the name salad, translator is a name often
given to a program which converts one representation
into an equivalent, other representation.

• The lines are a little fuzzy, but in general, one expects
that a compiler will
– analyze the source program
– find some representation of its meaning
– embed that meaning in a lower-level encoding where the concepts of

the source language don't exist

• The last point defines our place in the landscape

21

Scope

• Common/useful language abstractions is a topic we cannot avoid,
because we need something to compile.
– Focus is on methodically mapping them to lower level abstractions;

arguing which abstractions belong in a language, and how to use
them is a topic for a class on programming language design

• Run time systems we must touch upon in order to formulate a
translation scheme
– Focus is on using what's provided by an operating system – deciding

what's best to provide belongs to O/S and programming languages

• Assemblers we could do without, but using one saves us a
bundle of work.

• Linkers and loaders are, again, essential trappings to get things
running.
– We will look at what they do, but not how to make

them – that's the O/S again.

22

An iteration of the fix/compile/run cycle
(as seen from far away)

1. Write program 2. Compile

3. Obtain executable4. Run program

23

Digging into step 2
• Ideally, compilation should have been the only unknown on the previous

slide, but we'll have to look at how things are run in due time

• The production of an executable is a composite process in itself, though
– let's start there.

• From the time you invoke “the compiler” until you get an executable,
there is
– Preprocessing
– Lexical analysis
– Syntax analysis, creation of intermediate representation
– Semantic analysis
– Lowering of intermediate representation
– More semantic analysis / optimization
– Code generation
– Assembly
– Linking

(This list is a little rough, don't memorize it as The Truth)

24

From the top

• Preprocessing isn't that interesting – it's just
substituting some text and slapping files together

• Therefore, the first salient point is lexical analysis

• Let us dive right in:
When the compiler first sees a program…

(To Be Continued)

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

