NTNU - Trondheim
Norwegian University of

Science and Technology

Recitation lecture: problem set 2
* Theory part
* Practical part
* C specifics

LY
www.ntnu.edu ¥ Name, title of the presentation

Content of the archive

* src/ - contains C source files
* include/ - contains C header files

* vsl| programs/ - contains example VSL programs for

testing
— Contains a makefile to run your vsic
— ‘make’ to make all or ‘make <path>.ast to run on a single file

* ‘make’ — builds the the compiler as src/vslc

— Add ‘clean’ to remove intermediate files, or ‘purge’ to remove
binaries as well

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu %

Things to implement

* Scanner in src/scanner.l
— Needs to return all types of tokens

* Parser in src/parser.y
— Constructs syntax tree as tokens are received
— Matched text available through yytext and special variables $1, $2..

* Auxiliary functions in src/tree.c

— Construction and deletion of dynamically allocated nodes
— node _t struct defined in includel/ir.h
— node_print is already implemented

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu %

Yacc and Lex

* Lex is a specification for scanner generators, flex is
one implementation

* Yacc is a specification for parser generators, bison is
one implementation

* Install: sudo apt install flex bison
— Assuming Ubuntu based OS or WSL distribution

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu %

Lex specifications

definitions

%%

regular expression { matching action }
%%

other code

* Regular C code can be embedded, enclosed between “%{’
and ‘%}’

* Helpful directives: yylineno and friends

* Code section may be practically empty, keeping logic
section in parser

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu %

Status of the scanner

* Three rules are already implemented
— {WHITESPACE}+ eliminates all whitespace.
— {COMMENT} eliminates comments (named regex).

— . sends catches all remaining characters and returns them one by
one.

* Symbolic names for multi-character tokens are
defined in a header generated from the %token
directive used in src/parser.y

* Add regex for remaining tokens

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu %

Token names

* Tokens are mostly named after their keywords

* Exception: BEGIN and END are named
OPENBLOCK and CLOSEBLOCK

— Flex macro BEGIN switches internal state: BEGIN(<new state>)

%state MY_STATE

MY_RULE spam

MY_RULE2 foo

%%

<MY_STATE>{

{MY_RULE} { /* Action when matching MY_RULE in MY_STATE */ }
{MY_RULE2} { BEGIN(INITIAL); /* Return to INITIAL state */ }

}

{MY_RULE} { /* Action when matching MY_RULE in INITIAL state */ }
{MY_RULE2} { BEGIN(MY_STATE); /* Change state */ }

NTNU - Trondheim
Norwegian University of

Want Yacc and Lex syntax highlighting? Recommend ‘yash’ for VS Code @ Science and Technology

LY
www.ntnu.edu %

Structure node t

* Used to build the syntax tree
* Bit of tricky pointer acrobatics

typedef struct n {

node_index_t type; /! Type of the node
void *data; /! Pointer to associated data
struct s *entry; // Pointer to symtab entry (ignore for now)
uinte4_t n_children; {/ Number of child nodes
struct n **children; /f Array of n_children child nodes
} node_t;

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu %

The auxiliary functions

* Initializer function for node _t takes a node (pre-
allocated), type, data,n_children and a variable

amount of node_t objects (va-list)

void node_init (
node_t *nd, node_index_t type, void *data, uint6é4_t n_children, ...

) ;
* VA-list from stdarg.h (included in vslc.h) will have to

be read
— ..." syntax probably familiar from the printf/scanf function family

f/ Initialize valist

va_list valist;
// Set boundaries

va_start(valist, n_children);
for (int i = ®; i < n_children; i++) { '/ Iterate list
node_t *child_n = va_arg(valist, node_t *); // Extract argument (valist, type)
} NTNU - Trondheim
Norwegian University of
Science and Technology

LY
www.ntnu.edu %

The auxiliary functions

* node_finalize and subtree_destroy

— Use subtree_destroy as a recursive destructor in order to free the
whole tree.

* All heap allocated objects need to be freed when
done.

* Valgrind is a useful tool to check for memory leaks

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu %

Why are arguments passed by
reference?

* Objects and arrays can be very large, wasteful to
copy into a function call.

* Pointers are always a 32/64 bit address.

* Passing allocated node_t* to initializer

— Could as well have allocated the node inside the function and
returned a pointer to the newly created object

— Convention to let the caller decide how the object is allocated

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu %

Yacc specifications

* Yacc has the same structure as Lex

* Rules are implemented similarly to the Backus-Naur form (more
examples in skeleton)
expr :
expr ‘+’ expr { /I* parsed an addition */ }
| expr ‘-’ expr { /* parsed a subtraction */ }

* 31, $2 etc refer to the n’th token in a production.
* $9 refers to the object returned by the production (type node_t*)

« “expr ‘+’ expr $1 and $3 are node_t * objects representing the two
expressions

— All expr op expr will look identical in the syntax tree, remember to stash the operator
in the data field. B NTNU - Trondheim

Norwegian University of
Science and Technology

\
www.ntnu.edu %

Status of the parser

* Most supporting structures
— Tokens
— Error handling

* Some dummy produtions

— These are in no way correct for the parser you are writing, but
serve as a demonstration of the Yacc syntax.

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu %

Bottom of the tree

* The smallest reductions like STRING and INTEGER
have just a token on r.h.s.

* $% is anode_t but INTEGER is just a token

* The semantic rule has to create a leaf node

containing the data
— Parse the content of yytext

— The content of yytext will change as parsing continues, so
remember to copy the data. (functions to consider: strcpy, strdup,
sscanf, strtol)

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu %

Parsing data

* int64_t my int = strtol(yytext, NULL, 10);
— Will parse a 64-bit integer (atoi is deprecated)

* Arguments are
— char *buffer — where text is found
— char *end «— where translation stops (Not needed now)
— int base < base (we use base 10 integers)

* char *data = strdup(yytext);

— Mild violation of “caller allocates” rule, but it's a common exception.
An alternative is the more cumbersome
char *data = malloc (strlen(yytext)+1);
strcpy(data, yytext);

— $$->data = strdup(yytext); B NTNU - Trondheim

Norwegian University of
Science and Technology

\
www.ntnu.edu %

VSL expressions

* The arithmetic expressions define an ambiguous sub-
grammar

* Instead of having to disambiguate the grammar, Yacc
supports precedence rules:

%left ‘+’ ‘-’
%left “** I’
%nonassoc UMINUS

— Assign left associativity for binary operations, and assigns UMINUS the
highest precedence, while add/sub gets the lowest

* Same goes for if-else (dangling else problem)

%nonassoc IF THEN
%nonassoc ELSE

 Take a moment to appreciate this feature

NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu %

How | would attack it

Isolate the scanner

— The main function calls yyparse, comment it out and call yylex while
completing the scanner

Test the auxiliary functions in main while getting
comfortable with them

Connect back with the parser

— Reintroduce yyparse instead of yylex

— Add one production at the time, e.g. let program catch an integer, then
extend to a declaration, then a list etc in your preferred order

Apply your preferred code style
— Your hand-in does not have to look like what was handed out, but please
be consistent in you coding style. B NTNU - Trondheim
Norwegian University of

Science and Technology

\
www.ntnu.edu %

How | would attack it

* What you put in the data field will vary, the context of
what it contains is given by the node’s type

* Don't get tempted to use void* as a character literal
(remember it is a pointer)
Dangerous: $$->data = (void*)’+’;
Better:
$$->data = (char *)malloc(1);
(char)$$->data = ‘+’;

char my_data = (char*)node->data;
NTNU - Trondheim
B Norwegian University of
Science and Technology

\
www.ntnu.edu %

Touch typing class

* One aim of this exercise is to get the hang of handling
trees in dynamic memory

* Once you get the idea, the rest is mainly a matter of
typing variations of a theme — large, but not
particularly difficult

* Secondary point: Just how quickly the complexity of a
language grows

* Tip: Macros can save you a lot of typing
#define MY_MACRO(x, y, z) do {\

do_something(x, y, z); \
while (false)

NTNU - Trondheim
Norwegian University of
Science and Technology

\
www.ntnu.edu %

GL/HF

* Ask questions
* Good Luck
* Hopefully have a little fun as well

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu %

Looking forward

* The generated tree contains redundant information
— Left recursive productions make deep trees out of lists
— Expressions with all constants could be reduced to simple integers
— Etc.

* We will tidy up later

— Straight forward parsing keeps the parser code as simple as
possible and is OK for now

— entry field is currently unused. We will use this later for creating
symbol tables. It can be NULL for now

NTNU - Trondheim
Norwegian University of

Science and Technology

LY
www.ntnu.edu %

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

