
TDT4205 Problem Set 2

Answers are to be submitted via Blackboard, by Feb. 20th.

1 Top-down parsing

1.1 LL(1) form

The following grammar fragment abstracts the WHERE construct in the For-
tran language. Rewrite it into LL(1) form by using left factoring and/or left
recursion elimination as appropriate.
S → wXY z
X →MB|MBeX
Y → eB|ε
M → m
B → b

1.2 Parsing table

Tabulate the FIRST and FOLLOW sets of the nonterminals in the resulting
grammar, and construct the predictive parsing table.

1

2 VSL specification

The directory in the code archive ps2 skeleton.tgz begins a compiler for a slightly
modified 64-bit version of VSL (“Very Simple Language”), defined by Bennett
(Introduction to Compiling Techniques, McGraw-Hill, 1990).

Its lexical structure is defined as follows:

� Whitespace consists of the characters ’\t’, ’\n’, ’\r’, ’\v’ and ’ ’. It is
ignored after lexical analysis.

� Comments begin with the sequence ’//’, and last until the next ’\n’ char-
acter. They are ignored after lexical analysis.

� Reserved words are func, begin, end, return, print,
continue, if, then, else, while, do, and var.

� Operators are assignments (’:=’, ’+=’, ’-=’, ’*=’, ’/=’), the basic arith-
metic operators ’+’, ’-’, ’*’, ’/’, and relational operators ’=’, ’<’, ’>’.

� Numbers are sequences of one or more decimal digits (’0’ through ’9’).

� Strings are sequences of arbitrary characters other than ’\n’, enclosed in
double quote characters ’”’.

� Identifiers are sequences of at least one letter followed by an arbitrary se-
quence of letters and digits. Letters are the upper- and lower-case English
alphabet (’A’ through ’Z’ and ’a’ through ’z’), as well as underscore (’ ’).
Digits are the decimal digits, as above.

The syntactic structure is given in the context-free grammar on the last page
of this document.

Building the program supplied in the archive ps2 skeleton.tgz combines the
contents of the src/ subdirectory into a binary src/vslc which reads standard
input, and produces a parse tree.

The structure in the vslc directory will be similar throughout subsequent
problem sets, as the compiler takes shape. See the slide set from the PS2
recitation for an explanation of its construction, and notes on writing Lex/Yacc
specifications.

2.1 Scanner

Complete the Lex scanner specification in src/scanner.l, so that it properly
tokenizes VSL programs.

2.2 Tree construction

A node t structure is defined in include/ir.h. Complete the auxiliary functions
node init, and node finalize so that they can initialize/free node t-sized memory
areas passed to them by their first argument. The function destroy subtree
should recursively remove the subtree below a given node, while node finalize
should only remove the memory associated with a single node.

2

2.3 Parser

Complete the Yacc parser specification to include the VSL grammar, with se-
mantic actions to construct the program’s parse tree using the functions im-
plemented above. The top-level production should assign the root node to the
globally accessible node t pointer ’root’ (declared in src/vslc.c).

3

VSL Syntax
program→ global list
global list→ global | global list global
global→ function | declaration
statement list→ statement | statement list statement
print list→ print item | print list ′,′ print item
expression list→ expression | expression list ′,′ expression
variable list→ identifier | variable list ′,′ identifier
argument list→ expression list | ε
parameter list→ variable list | ε
declaration list→ declaration | declaration list declaration
function→ FUNC identifier ′(′ parameter list ′)′ statement
statement→ assignment statement | return statement | print statement
| if statement | while statement | null statement | block

block → BEGIN declaration list statement list END
| BEGIN statement list END

assignment statement→ identifier ′ :′ ′ =′ expression
| identifier ′+′ ′ =′ expression | identifier ′−′ ′ =′ expression
| identifier ′∗′ ′ =′ expression | identifier ′/′ ′ =′ expression

return statement→ RETURN expression
print statement→ PRINT print list
null statement→ CONTINUE
if statement→ IF relation THEN statement
| IF relation THEN statement ELSE statement

while statement→WHILE relation DO statement
relation→ expression ′ =′ expression | expression ′ <′ expression
| expression ′ >′ expression

expression→ expression ′|′ expression | expression ’ˆ ’ expression
| expression ′&′ expression | expression ′+′ expression
| expression ′−′ expression | expression ′∗′ expression | expression ′/′ expression
| ′−′ expression | ’˜ ’ expression | ′(′ expression ′)′ | number | identifier
| identifier ′(′ argument list ′)′

declaration→ V AR variable list
print item→ expression | string
identifier → IDENTIFIER
number → NUMBER
string → STRING

4

