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Introduction
Chapter

What
is it

about?
Learning Targets of this Chapter

The chapter gives an overview over
different phases of a compiler and
their tasks.

Contents

1.1 Introduction . . . . . . . . . . 1
1.2 Compiler architecture &

phases . . . . . . . . . . . . . 3
1.3 Bootstrapping and cross-

compilation . . . . . . . . . . 11

1.1 Introduction

Course info

Sources

Different from some previous semesters, one recommended book the course is [6] besides
also, as in previous years, [9]. We will not be able to cover the whole book anyway (neither
the full [9] book). In addition the slides will draw on other sources, as well. Especially in
the first chapters, for the so-called front-end, the material is so “standard” and established,
that it almost does not matter, which book to take.

Course material from:

• Martin Steffen (msteffen@ifi.uio.no)
• Stein Krogdahl (stein@ifi.uio.no)
• Birger Møller-Pedersen (birger@ifi.uio.no)
• Eyvind Wærstad Axelsen (eyvinda@ifi.uio.no)

Course’s web-page

http://www.uio.no/studier/emner/matnat/ifi/INF5110

• overview over the course, pensum (watch for updates)
• various announcements, beskjeder, etc.

http://www.uio.no/studier/emner/matnat/ifi/INF5110
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Course material and plan

• Material: based largely on [6] and [9], but also other sources will play a role. A
classic is “the dragon book” [2], we might use part of code generation from there

• see also errata list at http://www.cs.sjsu.edu/~louden/cmptext/
• approx. 3 hours teaching per week
• mandatory assignments (= “obligs”)

– O1 published mid-February, deadline mid-March
– O2 published beginning of April, deadline beginning of May

• group work up-to 3 people recommended. Please inform us about such planned group
collaboration

• slides: see updates on the net
• exam: (if written) 12th June, 14:30, 4 hours.

Motivation: What is CC good for?

• not everyone is actually building a full-blown compiler, but
– fundamental concepts and techniques in CC
– most, if not basically all, software reads, processes/transforms and outputs

“data”⇒ often involves techniques central to CC
– understanding compilers ⇒ deeper understanding of programming language(s)
– new language (domain specific, graphical, new language paradigms and con-

structs. . . )⇒ CC & their principles will never be “out-of-fashion”.

http://www.cs.sjsu.edu/~louden/cmptext/
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Figure 1.1: Structure of a typical compiler

1.2 Compiler architecture & phases

Architecture of a typical compiler

Anatomy of a compiler
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Pre-processor

• either separate program or integrated into compiler
• nowadays: C-style preprocessing mostly seen as “hack” grafted on top of a compiler.1
• examples (see next slide):

– file inclusion2
– macro definition and expansion3
– conditional code/compilation: Note: #if is not the same as the if-programming-

language construct.
• problem: often messes up the line numbers

C-style preprocessor examples

#include <fi lename>

Listing 1.1: file inclusion

#varde f #a = 5 ; #c = #a+1
. . .
#i f (#a < #b)

. .
#else

. . .
#endif

Listing 1.2: Conditional compilation

Also languages like TEX, LATEX/ etc. support conditional complication (e.g., if<condition>
... else ... fi in TEX). As a side remark: These slides and this script makes
quite some use of it: some text shows up only in the handout-version, etc.

C-style preprocessor: macros

#macrodef hentdata (#1,#2)−−− #1−−−−
#2−−−(#1)−−−

#enddef

. . .
#hentdata ( kar i , per )

Listing 1.3: Macros

1C-preprocessing is still considered a useful hack, otherwise it would not be around . . . But it does not
naturally encourage elegant and well-structured code, just quick fixes for some situations.

2The single most primitive way of “composing” programs split into separate pieces into one program.
3Compare also to the \newcommand-mechanism in LATEX or the analogous \def-command in the more
primitive TEX-language.
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−−− kar i −−−−
per −−−( ka r i )−−−

Note: the code is not really C, it’s used to illustrate macros similar to what can be
done in C. For real C, see https://gcc.gnu.org/onlinedocs/cpp/Macros.html.
Comditional compilation is done with

#if, #ifdef, #ifndef, #else, #elif. and #endif. Definitions are done with
#define.

Scanner (lexer . . . )

• input: “the program text” ( = string, char stream, or similar)
• task

– divide and classify into tokens, and
– remove blanks, newlines, comments ..

• theory: finite state automata, regular languages

Scanner: illustration

a [ index ] ␣=␣4␣+␣2

lexeme token class value
a identifier "a" 2
[ left bracket
index identifier "index" 21
] right bracket
= assignment
4 number "4" 4
+ plus sign
2 number "2" 2

0
1
2 "a"⋮
21 "index"
22 ⋮

https://gcc.gnu.org/onlinedocs/cpp/Macros.html
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Parser

a[index] = 4 + 2: parse tree/syntax tree

expr

assign-expr

expr

subscript expr

expr

identifier
a

[ expr

identifier
index

]

= expr

additive expr

expr

number
4

+ expr

number
2

a[index] = 4 + 2: abstract syntax tree

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4
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The trees here are mainly for illustration. It’s not meant as “this is how the abstract
syntax tree looks like” for the example. In general, abstract syntax trees are less verbose
that parse trees. The latter are sometimes also called concrete syntax trees. The parse
tree(s) for a given word are fixed by the grammar. The abstract syntax tree is a bit a
matter of design. Of course, the grammar is also a matter of design, but once the grammar
is fixed, the parse trees are fixed, as well. What is typical in the illustrative example is: an
abstract syntax tree would not bother to add nodes representing brackets (or parentheses
etc), so those are omitted. In general, ASTs are more compact, ommitting superfluous
information without omitting relevant information.

(One typical) Result of semantic analysis

• one standard, general outcome of semantic analysis: “annotated” or “decorated”
AST

• additional info (non context-free):
– bindings for declarations
– (static) type information

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?

• here: identifiers looked up wrt. declaration
• 4, 2: due to their form, basic types.

Optimization at source-code level

assign-expr

subscript expr

identifier
a

identifier
index

number
6

1

t = 4+2;
a[index] = t;
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2

t = 6;
a[index] = t;

3

a[index] = 6;

The lecture will not dive too much into optimizations. The ones illustrated here are known
as constant folding and constant propagation. Optimizations can be done (and actually
are done) in various phases on the compiler. Here we said, optimization at “source-code
level”, and what is typically meant by that is optimization on the abstract syntax tree
(presumably at the AST after type checking and some semantic analysis). The AST is
considered so close to the actual input that one still considers it as “source code” and no
one tries seriouisly optimize code a the input-string level. If the compiler “massages” the
input, it’s mostly not seen as optimization, it’s rather (re-)formatting. There are indeed
format-tool that assist the user to have the program is a certain “standardized” format
(standard indentation, new-lines appropriately, etc.)

Concerning optimization, what is also typical is,that there are many different optimiza-
tions building upon each other. First, optimization A is done, then, taking the result,
optimization B, etc. Sometimes even doing A again, and then B again, etc.

Code generation & optimization

MOV␣␣R0 , ␣ index ␣ ; ; ␣␣ value ␣ o f ␣ index ␣−>␣R0
MUL␣␣R0 , ␣2␣␣␣␣␣ ; ; ␣␣double ␣ value ␣ o f ␣R0
MOV␣␣R1 , ␣&a␣␣␣␣ ; ; ␣␣ address ␣ o f ␣a␣−>␣R1
ADD␣␣R1 , ␣R0␣␣␣␣ ; ; ␣␣add␣R0␣ to ␣R1
MOV␣∗R1 , ␣6␣␣␣␣␣ ; ; ␣␣ const ␣6␣−>␣address ␣ in ␣R1

MOV␣R0 , ␣ index ␣␣␣␣␣␣ ; ; ␣ va lue ␣ o f ␣ index ␣−>␣R0
SHL␣R0␣␣␣␣␣␣␣␣␣␣␣␣␣ ; ; ␣ double ␣ value ␣ in ␣R0
MOV␣&a [R0 ] , ␣6␣␣␣␣␣␣ ; ; ␣ const ␣6␣−>␣address ␣a+R0

• many optimizations possible
• potentially difficult to automatize4, based on a formal description of language and

machine
• platform dependent

4Not that one has much of a choice. Difficult or not, no one wants to optimize generated machine code
by hand . . . .
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For now it’s not too important what the code snippets do. It should be said, though, that
it’s not a priori always clear in which way a transformation such as the one shown is an
improvement. One transformation that most probably is an improvement, that’s the “shift
left” for doubling. Another one is that the program is shorter. Program size is something
that one might like to “optmize” in itself. Also: ultimately each machine operation needs
to be loaded to the processor (and that costs time in itself). Note, however, that it’s
generally not the case that “one assembler line costs one unit of time”. Especially, the last
line in the second program could costs more than other simpler operations. In general,
operations on registers are quite faster anyway than those referring to main memory. In
order to make a meaningful statement of the effect of a program transformation, one would
need to have a “cost model” taking register access vs. memory access and other aspects
into account.

Anatomy of a compiler (2)

Misc. notions

• front-end vs. back-end, analysis vs. synthesis
• separate compilation
• how to handle errors?
• “data” handling and management at run-time (static, stack, heap), garbage collec-

tion?
• language can be compiled in one pass?

– E.g. C and Pascal: declarations must precede use
– no longer too crucial, enough memory available

• compiler assisting tools and infrastructure, e.g.
– debuggers
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– profiling
– project management, editors
– build support
– . . .

Compiler vs. interpeter

compilation

• classical: source ⇒ machine code for given machine
• different “forms” of machine code (for 1 machine):

– executable ⇔ relocatable ⇔ textual assembler code

full interpretation

• directly executed from program code/syntax tree
• often for command languages, interacting with the OS, etc.
• speed typically 10–100 slower than compilation

compilation to intermediate code which is interpreted

• used in e.g. Java, Smalltalk, . . . .
• intermediate code: designed for efficient execution (byte code in Java)
• executed on a simple interpreter (JVM in Java)
• typically 3–30 times slower than direct compilation
• in Java: byte-code ⇒ machine code in a just-in time manner (JIT)

More recent compiler technologies

• Memory has become cheap (thus comparatively large)
– keep whole program in main memory, while compiling

• OO has become rather popular
– special challenges & optimizations

• Java
– “compiler” generates byte code
– part of the program can be dynamically loaded during run-time

• concurrency, multi-core
• virtualization
• graphical languages (UML, etc), “meta-models” besides grammars
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1.3 Bootstrapping and cross-compilation

Compiling from source to target on host

“tombstone diagrams” (or T-diagrams). . . .

Two ways to compose “T-diagrams”
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Using an “old” language and its compiler for write a compiler for a “new” one

Pulling oneself up on one’s own bootstraps

bootstrap (verb, trans.): to promote or develop . . . with little or no assistance

— Merriam-Webster

http://www.merriam-webster.com/dictionary/bootstrap
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Explanation

There is no magic here. The first thing is: the “Q&D” compiler in the diagram is said to
be in machine code. If we want to run that compiler as executable (as opposed to being
interpreted, which is ok too), of course we need machine code, but it does not mean that
we have to write that Q&D compiler in machine code. Of course we can use the approach
explained before that we use an existing language with an existing compiler to create that
machine-code version of the Q&D compiler.

Furthermore: when talking about efficiency of a compiler, we mean (at least here) exactly
that: it’s the compilation process itself which is inefficent! As far as efficency goes, one the
one hand the compilation process can be efficient or not, and on the other the generated
code can be (on average and given competen programmers) be efficent not. Both aspects
are not independent, though: to generate very efficient code, a compiler might use many
and aggressive optimizations. Those may produce efficient code but cost time to do. At
the first stage, we don’t care how long it takes to compile, and also not how efficient is
the code it produces! Note the that code that it produces is a compiler, it’s actually a
second version of “same” compiler, namely for the new language A to H and on H. We
don’t care how efficient the generated code, i.e., the compiler is, because we use it just in
the next step, to generate the final version of compiler (or perhaps one step further to the
final compiler).

Bootstrapping 2
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Porting & cross compilation

The situation is that K is a new “platform” and we want to get a compiler for our new
language A for K (assuming we have one already for the old platform H). It means that
not only we want to compile onto K, but also, of course, that it has to run on K. These
are two requirements: (1) a compiler to K and (2) a compiler to run on K. That leads to
two stages.

In a first stage, we “rewrite” our compiler for A, targeted towards H, to the new platform
K. If structured properly, it will “only” require to port or re-target the so-called back-
end from the old platform to the new platform. If we have done that, we can use our
executable compiler on H to generate code for the new platform K. That’s known as
cross-compilation: use platform H to generate code for platform K.

But now, that we have a (so-called cross-)compiler from A to K, running on the old
platform H, we use it to compile the retargeted compiler again!
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Front end
Part
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Scanning
Chapter

What
is it

about?
Learning Targets of this Chapter
1. alphabets, languages,
2. regular expressions
3. finite state automata / recognizers
4. connection between the two

concepts
5. minimization

The material corresponds roughly
to [6, Section 2.1–2.5] or ar large
part of [9, Chapter 2]. The material
is pretty canonical, anyway.

Contents

2.1 Introduction . . . . . . . . . . 16
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2.3 DFA . . . . . . . . . . . . . . 33
2.4 Implementation of DFA . . . 40
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to NFAs (Thompson’s
construction) . . . . . . . . . 44

2.7 Determinization . . . . . . . 49
2.8 Minimization . . . . . . . . . 52
2.9 Scanner implementations

and scanner generation tools 55

2.1 Introduction

Scanner section overview

What’s a scanner?

• Input: source code.1
• Output: sequential stream of tokens

• regular expressions to describe various token classes
• (deterministic/non-determinstic) finite-state automata (FSA, DFA, NFA)
• implementation of FSA
• regular expressions → NFA
• NFA ↔ DFA

1The argument of a scanner is often a file name or an input stream or similar.
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What’s a scanner?

• other names: lexical scanner, lexer, tokenizer

A scanner’s functionality

Part of a compiler that takes the source code as input and translates this stream of
characters into a stream of tokens.

More info

• char’s typically language independent.2
• tokens already language-specific.3
• works always “left-to-right”, producing one single token after the other, as it scans

the input4
• it “segments” char stream into “chunks” while at the same time “classifying” those

pieces ⇒ tokens

Typical responsibilities of a scanner

• segment & classify char stream into tokens
• typically described by “rules” (and regular expressions)
• typical language aspects covered by the scanner

– describing reserved words or key words
– describing format of identifiers (= “strings” representing variables, classes . . . )
– comments (for instance, between // and NEWLINE)
– white space

∗ to segment into tokens, a scanner typically “jumps over” white spaces and
afterwards starts to determine a new token

∗ not only “blank” character, also TAB, NEWLINE, etc.
• lexical rules: often (explicit or implicit) priorities

– identifier or keyword? ⇒ keyword
– take the longest possible scan that yields a valid token.

“Scanner = regular expressions (+ priorities)”

Rule of thumb

Everything about the source code which is so simple that it can be captured by reg.
expressions belongs into the scanner.

2Characters are language-independent, but perhaps the encoding (or its interpretation) may vary, like
ASCII, UTF-8, also Windows-vs.-Unix-vs.-Mac newlines etc.

3There are large commonalities across many languages, though.
4No theoretical necessity, but that’s how also humans consume or “scan” a source-code text. At least
those humans trained in e.g. Western languages.
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How does scanning roughly work?

aussen

. . . a [ i n d e x ] = 4 + 2 . . .

q0q1

q2

q3 ⋱
qn

Finite control

q2

Reading “head”
(moves left-to-right)

a[index] = 4 + 2

How does scanning roughly work?

• usual invariant in such pictures (by convention): arrow or head points to the first
character to be read next (and thus after the last character having been scanned/read
last)

• in the scanner program or procedure:
– analogous invariant, the arrow corresponds to a specific variable
– contains/points to the next character to be read
– name of the variable depends on the scanner/scanner tool

• the head in the pic: for illustration, the scanner does not really have a “reading head”
– remembrance of Turing machines, or
– the old times when perhaps the program data was stored on a tape.5

The bad(?) old times: Fortran

• in the days of the pioneers

• main memory was smaaaaaaaaaall
• compiler technology was not well-developed (or not at all)
• programming was for very few “experts”.6
• Fortran was considered high-level (wow, a language so complex that you had to

compile it . . . )
5Very deep down, if one still has a magnetic disk (as opposed to SSD) the secondary storage still has
“magnetic heads”, only that one typically does not parse directly char by char from disk. . .

6There was no computer science as profession or university curriculum.
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(Slightly weird) lexical ascpects of Fortran

Lexical aspects = those dealt with by a scanner

• whitespace without “meaning”:
I F( X 2. EQ. 0) TH E N vs. IF ( X2. EQ.0 ) THEN

• no reserved words!
IF (IF.EQ.0) THEN THEN=1.0

• general obscurity tolerated:
DO99I=1,10 vs. DO99I=1.10

DO␣99␣ I =1 ,10
␣−
␣−
99␣CONTINUE

Fortran scanning: remarks

• Fortran (of course) has evolved from the pioneer days . . .
• no keywords: nowadays mostly seen as bad idea7
• treatment of white-space as in Fortran: not done anymore: THEN and TH EN are

different things in all languages
• however:8 both considered “the same”:

Ifthen

i f ␣b␣ then␣ . .

7It’s mostly a question of language pragmatics. Lexers/parsers would have no problems using while as
variable, but humans tend to.

8Sometimes, the part of a lexer / parser which removes whitespace (and comments) is considered as
separate and then called screener. Not very common, though.
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Ifthen2

i f ␣␣␣b␣␣␣␣ then␣ . .

• since concepts/tools (and much memory) were missing, Fortran scanner and parser
(and compiler) were
– quite simplistic
– syntax: designed to “help” the lexer (and other phases)

A scanner classifies

• “good” classification: depends also on later phases, may not be clear till later

Rule of thumb

Things being treated equal in the syntactic analysis (= parser, i.e., subsequent phase)
should be put into the same category.

• terminology not 100% uniform, but most would agree:

Lexemes and tokens

Lexemes are the “chunks” (pieces) the scanner produces from segmenting the input source
code (and typically dropping whitespace). Tokens are the result of classifying those
lexemes.

• token = token name × token value

A scanner classifies & does a bit more

• token data structure in OO settings
– token themselves defined by classes (i.e., as instance of a class representing a

specific token)
– token values: as attribute (instance variable) in its values

• often: scanner does slightly more than just classification
– store names in some table and store a corresponding index as attribute
– store text constants in some table, and store corresponding index as attribute
– even: calculate numeric constants and store value as attribute
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One possible classification

name/identifier abc123
integer constant 42
real number constant 3.14E3
text constant, string literal "this is a text constant"
arithmetic op’s + - * /
boolean/logical op’s and or not (alternatively /\ \/ )
relational symbols <= < >= > = == !=

all other tokens: { } ( ) [ ] , ; := . etc.
every one it its own group

• this classification: not the only possible (and not necessarily complete)
• note: overlap:

– "." is here a token, but also part of real number constant
– "<" is part of "<="

One way to represent tokens in C

typedef struct {
TokenType tokenva l ;
char ∗ s t r i n g v a l ;
int numval ;

} TokenRecord ;

If one only wants to store one attribute:
typedef struct {

Tokentype tokenva l ;
union
{ char ∗ s t r i n g v a l ;

int numval
} a t t r i b u t e ;

} TokenRecord ;

How to define lexical analysis and implement a scanner?

• even for complex languages: lexical analysis (in principle) not hard to do
• “manual” implementation straightforwardly possible
• specification (e.g., of different token classes) may be given in “prosa”
• however: there are straightforward formalisms and efficient, rock-solid tools available:

– easier to specify unambigously
– easier to communicate the lexical definitions to others
– easier to change and maintain

• often called parser generators typically not just generate a scanner, but code for
the next phase (parser), as well.
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Prosa specification

A precise prosa specification is not so easy to achieve as one might think. For ASCII
source code or input, things are basically under control. But what if dealing with unicode?
Checking “legality” of user input to avoid SQL injections or similar format string attacks
can involve lexical analysis/scanning. If you “specify” in English: “ Backlash is a control
character and forbidden as user input ”, which characters (besides char 92 in ASCII) in
Chinese Unicode represents actually other versions of backslash? Note: unclarities about
“what’s a backslash” have been used for security attacks. Remember that “the” backslash-
character in OSs often has a special status, like it cannot be part of a file-name but used
as separator between file names, denoting a path in the file system. If one can “smuggle
in” an inofficial (“chinese”) backslash into a file-name, one can potentially access parts of
the file directory tree, which are supposed to be inaccessible.

Parser generator

The most famous pair of lexer+parser tools is called “compiler compiler” (lex/yacc =
“yet another compiler compiler”) since it generates (or “compiles”) an important part of
the front end of a compiler, the lexer+parser. Those kinds of tools are seldomly called
compiler compilers any longer.

2.2 Regular expressions

General concept: How to generate a scanner?

1. regular expressions to describe language’s lexical aspects
• like whitespaces, comments, keywords, format of identifiers etc.
• often: more “user friendly” variants of reg-exprs are supported to specify that

phase
2. classify the lexemes to tokens
3. translate the reg-expressions ⇒ NFA.
4. turn the NFA into a deterministic FSA (= DFA)
5. the DFA can straightforwardly be implementated

• step done automatically by a “lexer generator”
• lexer generators help also in other user-friendly ways of specifying the lexer: defining

priorities, assuring that the longest possible token is given back, repeat the processs
to generate a sequence of tokens9

The classification in step 2 is actually not directly covered by the classical Reg-expr =
DFA = NFA results, it’s something extra. The classical constructions presented here are
used to recognise (or reject) words. As a “side effect”, in an actual implementation, the
“class” of the word needs to be given back as well, i.e., the corresponding token needs to
be concstructed and handed over (step by step) to the next compiler phase, the parser.

9Maybe even prepare useful error messages if scanning (not scanner generation) fails.
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Use of regular expressions

• regular languages: fundamental class of “languages”
• regular expressions: standard way to describe regular languages
• not just used in compilers
• often used for flexible “ searching ”: simple form of pattern matching
• e.g. input to search engine interfaces
• also supported by many editors and text processing or scripting languages (starting

from classical ones like awk or sed)
• but also tools like grep or find (or general “globbing” in shells)

find . -name "*.tex"

• often extended regular expressions, for user-friendliness, not theoretical expressive-
ness

As for the origin of regular expressions: one starting point is Kleene [8] and there had
been earlier works outside “computer science”.

Kleene was a famous mathematician and influence on theoretical computer science. Fun-
nily enough, regular languages came up in the context of neuro/brain science. See the
following link for the origin of the terminology. Perhaps in the early years, people liked to
draw connections between between biology and machines and used metaphors like “elec-
tronic brain”, etc.

Alphabets and languages

Definition 2.2.1 (Alphabet Σ). Finite set of elements called “letters” or “symbols” or
“characters”.

Definition 2.2.2 (Words and languages over Σ). Given alphabet Σ, a word over Σ is a
finite sequence of letters from Σ. A language over alphabet Σ is a set of finite words over
Σ.

• practical examples of alphabets: ASCII, Norwegian letters (capital and non-capitals)
etc.

In this lecture: we avoid terminology “symbols” for now, as later we deal with e.g. symbol
tables, where symbols means something slighly different (at least: at a different level).
Sometimes, the Σ is left “implicit” (as assumed to be understood from the context).

Remark: Symbols in a symbol table (see later)

In a certain way, symbols in a symbol table can be seen similar to symbols in the way
we are handled by automata or regular expressions now. They are simply “atomic” (not
further dividable) members of what one calls an alphabet. On the other hand, in practical
terms inside a compiler, the symbols here in the scanner chapter live on a different level
compared to symbols encountered in later sections, for instance when discussing symbol

https://en.wikipedia.org/wiki/Glob_(programming)
http://stackoverflow.com/questions/975465/why-are-regular-expressions-called-regular-expressions
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tables. Typically here, they are characters, i.e., the alphabet is a so-called character
set, like for instance, ASCII. The lexer, as stated, segments and classifies the sequence of
characters and hands over the result of that process to the parser. The results is a sequence
of tokens, which is what the parser has to deal with later. It’s on that parser-level, that
the pieces (notably the identifiers) can be treated as atomic pieces of some language, and
what is known as the symbol table typcially operates on symbols at that level, not at the
level of individual characters.

Languages

• note: Σ is finite, and words are of finite length
• languages: in general infinite sets of words
• simple examples: Assume Σ = {a, b}
• words as finite “sequences” of letters

– ε: the empty word (= empty sequence)
– ab means “ first a then b ”

• sample languages over Σ are
1. {} (also written as ∅) the empty set
2. {a, b, ab}: language with 3 finite words
3. {ε} (/= ∅)
4. {ε, a, aa, aaa, . . .}: infinite languages, all words using only a ’s.
5. {ε, a, ab, aba, abab, . . .}: alternating a’s and b’s
6. {ab, bbab, aaaaa, bbabbabab, aabb, . . .}: ?????

Remark 1 (Words and strings). In terms of a real implementation: often, the letters are
of type character (like type char or char32 . . . ) words then are “sequences” (say arrays)
of characters, which may or may not be identical to elements of type string, depending
on the language for implementing the compiler. In a more conceptual part like here we
do not write words in “string notation” (like "ab"), since we are dealing abstractly with
sequences of letters, which, as said, may not actually be strings in the implementation.
Also in the more conceptual parts, it’s often good enough when handling alphabets with 2
letters, only, like Σ = {a, b} (with one letter, it gets unrealistically trivial and results may
not carry over to the many-letter alphabets). But 2 letters are often enough to illustrate
some concepts, after all, computers are using 2 bits only, as well . . . .

Finite and infinite words

There are important applications dealing with infinite words, as well, or also even infinite
alphabets. For traditional scanners, one mostly is happy with finite Σ ’s and especially
sees no use in scanning infinite “words”. Of course, some character sets, while not actually
infinite, are large (like Unicode or UTF-8)

Sample alphabets

Often we operate for illustration on alphabets of size 2, like {a, b}. One-letter alphabets
are uninteresting, let alone 0-letter alphabets. 3 letter alphabets may not add much as
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far as “theoretical” questions are concerned. That may be compared with the fact that
computers ultimately operate in words over two different “bits” .

How to describe languages

• language mostly here in the abstract sense just defined.
• the “dot-dot-dot” (. . .) is not a good way to describe to a computer (and to many

humans) what is meant (what was meant in the last example?)
• enumerating explicitly all allowed words for an infinite language does not work either

Needed

A finite way of describing infinite languages (which is hopefully efficiently implementable
& easily readable)

Is it apriori to be expected that all infinite languages can even be captured in a finite
manner?

• small metaphor
2.727272727 . . . 3.1415926 . . . (2.1)

Remark 2 (Programming languages as “languages”). Well, Java etc., seen syntactically
as all possible strings that can be compiled to well-formed byte-code, also is a language
in the sense we are currently discussing, namely a set of words over unicode. But when
speaking of the “Java-language” or other programming languages, one typically has also
other aspects in mind (like what a program does when it is executed), which is not covered
by thinking of Java as an infinite set of strings.

Remark 3 (Rational and irrational numbes). The illustration on the slides with the two
numbers is partly meant as that: an illustration drawn from a field you may know. The
first number from equation (2.1) is a rational number. It corresponds to the fraction

30
11

. (2.2)

That fraction is actually an acceptable finite representation for the “endless” notation
2.72727272... using “. . . ” As one may remember, it may pass as a decent definition of ra-
tional numbers that they are exactly those which can be represented finitely as fractions of
two integers, like the one from equation (2.2). We may also remember that it is character-
istic for the “endless” notation as the one from equation (2.1), that for rational numbers,
it’s periodic. Some may have learnt the notation

2.72 (2.3)

for finitely representing numbers with a periodic digit expansion (which are exactly the
rationals). The second number, of course, is π, one of the most famous numbers which
do not belong to the rationals, but to the “rest” of the reals which are not rational (and
hence called irrational). Thus it’s one example of a “number” which cannot represented
by a fraction, resp. in the periodic way as in (2.3).



26 2 Scanning
2.2 Regular expressions

Well, fractions may not work out for π (and other irrationals), but still, one may ask,
whether π can otherwise be represented finitely. That, however, depends on what actually
one accepts as a “finite representation”. If one accepts a finite description that describes
how to construct ever closer approximations to π, then there is a finite representation of
π. That construction basically is very old (Archimedes), it corresponds to the limits one
learns in analysis, and there are computer algorithms, that spit out digits of π as long as
you want (of course they can spit them out all only if you had infinite time). But the code
of the algo who does that is finite.

The bottom line is: it’s possible to describe infinite “constructions” in a finite manner,
but what exactly can be captured depends on what precisely is allowed in the description
formalism. If only fractions of natural numbers are allowed, one can describe the rationals
but not more.

A final word on the analogy to regular languages. The set of rationals (in, let’s say,
decimal notation) can be seen as language over the alphabet {0,1, . . . ,9 .}, i.e., the deci-
mals and the “decimal point”. It’s however, a language containing infinite words, such as
2.727272727 . . .. The syntax 2.72 is a finite expression but denotes the mentioned infinite
word (which is a decimal representation of a rational number). Thus, coming back to the
regular languages resp. regular expressions, 2.72 is similar to the Kleene-star, but not the
same. If we write 2.(72)∗, we mean the language of finite words

{2,2.72,2.727272, . . .} .
In the same way as one may conveniently define rational number (when represented in
the alphabet of the decimals) as those which can be written using periodic expressions
(using for instance overline), regular languages over an alphabet are simply those sets of
finite words that can be written by regular expressions (see later). Actually, there are
deeper connections between regular languages and rational numbers, but it’s not the topic
of compiler constructions. Suffice to say that it’s not a coincidence that regular languages
are also called rational languages (but not in this course).

Regular expressions

Definition 2.2.3 (Regular expressions). A regular expression is one of the following

1. a basic regular expression of the form a (with a ∈ Σ), or ε, or ∅
2. an expression of the form r ∣ s, where r and s are regular expressions.
3. an expression of the form r s, where r and s are regular expressions.
4. an expression of the form r∗, where r is a regular expression.

Precedence (from high to low): ∗, concatenation, ∣ By “concatenation”, the third point
in the enumeration is meant. It is written or represented without explicit concatenation
operator, just as juxtaposition, like ab is the concatenation of the characters a and b, and
also for concatenating whole words: w1 w2.
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Regular expressions

In [6], ∅ is not part of the regular expressions. For completeness sake it’s included here
even if it does not play a practically important role.

In other textbooks, also the notation + instead of ∣ for “alternative” or “choice” is a known
convention. The ∣ seems more popular in texts concentrating on grammars. Later, we
will encounter context-free grammars (which can be understood as a generalization of
regular expressions) and the ∣-symbol is consistent with the notation of alternatives in the
definition of rules or productions in such grammars. One motivation for using + elsewhere
is that one might wish to express “parallel” composition of languages, and a conventional
symbol for parallel is ∣. We will not encounter parallel composition of languages in this
course. Also, regular expressions using lot of parentheses and ∣ seems slightly less readable
for humans than using +.
Regular expressions are a language in itself, so they have a syntax and a semantics. One
could write a lexer (and parser) to parse a regular language. Obviously, tools like parser
generators do have such a lexer/parser, because their input language are regular expression
(and context free grammars, besides syntax to describe further things). One can see regular
languages as a domain-specific language for tools like (f)lex (and other purposes).

A “grammatical” definition

Later introduced as (notation for) context-free grammars:

r → a
r → ε
r → ∅

r → r ∣ r
r → r r
r → r∗

(2.4)

Same again

Notational conventions

Later, for CF grammars, we use capital letters to denote “variables” of the grammars (then
called non-terminals). If we like to be consistent with that convention, the definition looks
as follows:
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Grammar

R → a
R → ε
R → ∅

R → R ∣ R
R → RR
R → R∗

(2.5)

Symbols, meta-symbols, meta-meta-symbols . . .

• regexprs: notation or “language” to describe “languages” over a given alphabet Σ
(i.e. subsets of Σ∗)

• language being described ⇔ language used to describe the language⇒ language ⇔ meta-language
• here:

– regular expressions: notation to describe regular languages
– English resp. context-free notation: notation to describe regular expressions (a

notation itself)
• for now: carefully use notational convention for precision

To be careful: we will later (when dealing with parsers) distinguish between context-free
languages on the one hand and notations to denote context-free languages on the other.

In the same manner here: we now don’t want to confuse regular languages as concept
from particular notations (specifically, regular expressions) to write them down.

Notational conventions

• notational conventions by typographic means (i.e., different fonts etc.)
• you need good eyes, but: difference between

– a and a
– ε and ε
– ∅ and ∅
– ∣ and ∣ (especially hard to see :-))
– . . .

• later (when gotten used to it) we may take a more “relaxed” attitude towards it,
assuming things are clear, as do many textbooks.

Remark 4 (Regular expression syntax). We are rather careful with notations and meta-
notations, especially at the beginning. Note: in compiler implementations, the distinction
between language and meta-language etc. is very real (even if not done by typographic
means as in the script here or textbooks . . . ): the programming language being implemented
need not be the programming language used to implent that language (the latter would be
the “meta-language”). For example in the oblig: the language to implement is called
“Compila”, and the language used in the implementation will (for most) be Java. Both
languages have concepts like “types”, “expressions”, “statements”, which are often quite
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similar. For instance, both languages support an integer type at the user level. But one is
an integer type in Compila, the other integers at the meta-level.

Later, there will be a number of examples using regular expressions. There is a slight
“ambiguity” about the way regular expressions are described (in this slides, and elsewhere).
It may remain unnoticed (so it’s unclear if I should point it out here). On the other had,
the lecture is, among other things, about scanning and parsing of syntax, therefore it may
be a good idea to reflect on the syntax of regular expressions itself.

In the examples shown later, we will use regular expressions using parentheses, like for
instance in b(ab)∗. One question is: are the parentheses ( and ) part of the definition
of regular expressions or not? That depends a bit. In the presentation here typically one
would not care, one tells the readers that parentheses will be used for disambiguation, and
leaves it at that (in the same way one would not bother to tell the reader that it’s fine to use
“space” between different expressions (like a ∣ b is the same expression as a ∣ b). Another
way of saying that is that textbooks, intended for human readers, give the definition of
regular expressions as abstract syntax as opposed to concrete syntax. Those two concepts
will play a prominent role later in the grammar and parsing sections and will become
clearer then. Anyway, it’s thereby assumed that the reader can interpret parentheses as
grouping mechanism, as is common elsewhere, as well, and they are left out from the
definition not to clutter it.

Of course, computers and programs (i.e., in particular scanners or lexers), are not as good
as humans to be educated in “commonly understood” conventions (such as the instruction
for the reader that “paretheses are not really part of the regular expressions but can be
added for disambiguation”.) Abstract syntax corresponds to describing the output of a
parser (which are abstract syntax trees). In that view, regular expressions (as all notation
represented by abstract syntax) denote trees. Since trees in texts are more difficult (and
space-consuming) to write, one simply use the usual linear notation like the b(ab)∗ from
above, with parentheses and “conventions” like precedences, to disambiguate the expression.
Note that a tree representation represents the grouping of sub-expressions in its structure,
so for grouping purposes, parentheses are not needed in abstract syntax.

Of course, if one wants to implement a lexer or to use one of the available ones, one has
to deal with the particular concrete syntax of the particular scanner. There, of course,
characters like ′(′ and ′)′ (or tokens like LPAREN or RPAREN) will typically occur.

To sum up the discussion: Using concepts which will be discussed in more depth later, one
may say: whether paretheses are considered as part of the syntax of regular expressions
or not depends on the fact whether the definition is wished to be understood as describing
concrete syntax trees or abstract syntax trees!

See also Remark 5 later, which discusses further “ambiguities” in this context.

Same again once more

R → a ∣ ε ∣ ∅ basic reg. expr.∣ R ∣ R ∣ RR ∣ R∗ ∣ (R) compound reg. expr.
(2.6)

Note:
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• symbol ∣ : (bold) as symbol of regular expressions
• symbol ∣ : (normal, non-bold) meta-symbol of the CF grammar notation
• the meta-notation used here for CF grammars will be the subject of later chapters
• this time: parentheses “added” to the syntax.

Semantics (meaning) of regular expressions

Definition 2.2.4 (Regular expression). Given an alphabet Σ. The meaning of a regexp
r (written L(r)) over Σ is given by equation (2.7).

L(∅) = {} empty languageL(ε) = {ε} empty wordL(a) = {a} single “letter” from ΣL(rs) = {w1w2 ∣ w1 ∈ L(r),w2 ∈ L(s)} concatenationL(r ∣ s) = L(r) ∪L(s) alternativeL(r∗) = L(r)∗ iteration

(2.7)

• conventional precedences: ∗, concatenation, ∣.
• Note: left of “=”: reg-expr syntax, right of “=”: semantics/meaning/math 10

Examples

In the following:

• Σ = {a, b, c}.
• we don’t bother to “boldface” the syntax

words with exactly one b (a ∣ c)∗b(a ∣ c)∗
words with max. one b ((a ∣ c)∗) ∣ ((a ∣ c)∗b(a ∣ c)∗)(a ∣ c)∗ (b ∣ ε) (a ∣ c)∗
words of the form anban,
i.e., equal number of a’s
before and after 1 b

10Sometimes confusingly “the same” notation.
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Another regexpr example

words that do not contain two b’s in a row.

(b (a ∣ c))∗ not quite there yet((a ∣ c)∗ ∣ (b (a ∣ c))∗)∗ better, but still not there
= (simplify)((a ∣ c) ∣ (b (a ∣ c)))∗ = (simplifiy even more)(a ∣ c ∣ ba ∣ bc)∗(a ∣ c ∣ ba ∣ bc)∗ (b ∣ ε) potential b at the end(notb ∣ b notb)∗(b ∣ ε) where notb ≜ a ∣ c

Remark 5 (Regular expressions, disambiguation, and associativity). Note that in the
equations in the example, we silently allowed ourselves some “sloppyness” (at least for the
nitpicking mind). The slight ambiguity depends on how we exactly interpret definitions of
regular expressions. Remember also Remark 4 on page 28, discussing the (non-)status of
parentheses in regular expressions. If we think of Definition 2.2.3 on page 26 as describing
abstract syntax and a concrete regular expression as representing an abstract syntax tree,
then the constructor ∣ for alternatives is a binary constructor. Thus, the regular expression

a ∣ c ∣ ba ∣ bc (2.8)

which occurs in the previous example is ambiguous. What is meant would be one of the
following

a ∣ (c ∣ (ba ∣ bc)) (2.9)(a ∣ c) ∣ (ba ∣ bc) (2.10)((a ∣ c) ∣ ba) ∣ bc , (2.11)

corresponding to 3 different trees, where occurences of ∣ are inner nodes with two children
each, i.e., sub-trees representing subexpressions. In textbooks, one generally does not want
to be bothered by writing all the parentheses. There are typically two ways to disambiguate
the situation. One is to state (in the text) that the operator, in this case ∣, associates to the
left (alternatively it associates to the right). That would mean that the “sloppy” expression
without parentheses is meant to represent either (2.9) or (2.11), but not (2.10). If one
really wants (2.10), one needs to indicate that using parentheses. Another way of finding
an excuse for the sloppyness is to realize that it (in the context of regular expressions)
does not matter, which of the three trees (2.9) – (2.11) is actually meant. This is specific
for the setting here, where the symbol ∣ is semantically represented by set union ∪ (cf.
Definition 2.2.4 on the facing page) which is an associative operation on sets. Note that,
in principle, one may choose the first option —disambiguation via fixing an associativity—
also in situations, where the operator is not semantically associative. As illustration, use
the ’−’ symbol with the usal intended meaning of “subtraction” or “one number minus
another”. Obviously, the expression

5 − 3 − 1 (2.12)
now can be interpreted in two semantically different ways, one representing the result 1,
and the other 3. As said, one could introduce the convention (for instance) that the binary
minus-operator associates to the left. In this case, (2.12) represents (5 − 3) − 1.
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Whether or not in such a situation one wants symbols to be associative or not is a judge-
ment call (a matter of language pragmatics). On the one hand, disambiguating may make
expressions more readable by allowing to omit parenthesis or other syntactic markers which
may make the expression or program look cumbersome. On the other, the “light-weight”
and “easy-on-the-eye” syntax may trick the unsuspecting programmer into misconceptions
about what the program means, if unaware of the rules of associativity and priorities. Dis-
ambiguation via associativity rules and priorities is therefore a double-edged sword and
should be used carefully. A situation where most would agree associativity is useful and
completely unproblematic is the one illustrated for ∣ in regular expression: it does not mat-
ter anyhow semantically. Decisions concerning when to use ambiguous syntax plus rules
how to disambiguate them (or forbid them, or warn the user) occur in many situations in
the scannning and parsing phases of a compiler.

Now, the discussion concerning the “ambiguity” of the expression (a ∣ c ∣ ba ∣ bc) from
equation (2.8) concentrated on the ∣-construct. A similar discussion could obviously be
made concerning concatenation (which actually here is not represented by a readable con-
catenation operator, but just by juxtaposition (= writing expressions side by side)). In
the concrete example from (2.8), no ambiguity wrt. concatenation actually occurs, since
expressions like ba are not ambiguous, but for longer sequences of concatenation like abc,
the question of whether it means a(bc) or a(bc) arises (and again, it’s not critical, since
concatenation is semantically associative).

Note also that one might think that the expression suffering from an ambiguity concerning
combinations of operators, for instance, combinations of ∣ and concatenation. For instance,
one may wonder if ba ∣ bc could be interpreted as (ba) ∣ (bc) and b(a ∣ (bc)) and b(a ∣ b)c.
However, in Definition 2.2.4 on page 30, we stated precedences or priorities, stating that
concatenation has a higher precedence over ∣, meaning that the correct interpretation is(ba) ∣ (bc). In a text-book the interpretation is “suggested” to the reader by the typesetting
ba ∣ bc (and the notation it would be slightly less “helpful” if one would write ba∣bc. . . and
what about the programmer’s version a b|a c?). The situation with precedence is one
where difference precedences lead to semantically different interpretations. Even if there’s a
danger therefore that programmers/readers mis-interpret the real meaning (being unaware
of precedences or mixing them up in their head), using precedences in the case of regular
expressions certainly is helpful, The alternative of being forced to write, for instance

((a(b(cd))) ∣ (b(a(ad)))) for abcd ∣ baad

is not even appealing to hard-core Lisp-programmers (but who knows ...).

A final note: all this discussion about the status of parentheses or left or right assocativity
in the interpretation of (for instance mathematical) notation is mostly is over-the-top for
most mathematics or other fields where some kind of formal notations or languages are
used. There, notation is introduced, perhaps accompanied by sentences like “parentheses
or similar will be used when helpful” or “we will allow ourselves to omit parentheses if
no confusion may arise”, which means, the educated reader is expected to figure it out.
Typically, thus, one glosses over too detailed syntactic conventions to proceed to the more
interesting and challenging aspects of the subject matter. In such fields one is furthermore
sometimes so used to notational traditions (“multiplication binds stronger than addition”),
perhaps established since decades or even centuries, that one does not even think about
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them consciously. For scanner and parser designers, the situation is different; they are
requested to come up with the notational (lexical and syntactical) conventions of perhaps
a new language, specify them precisely and implement them efficiently. Not only that:
at the same time, one aims at a good balance between expliciteness (“Let’s just force
the programmer to write all the parentheses and grouping explicitly, then he will get less
misconceptions of what the program means (and the lexer/parser will be easy to write
for me. . . )”) and economy in syntax, leaving many conventions, priorities, etc. implicit
without confusing the target programmer.

Additional “user-friendly” notations

r+ = rr∗
r? = r ∣ ε

Special notations for sets of letters:

[0 − 9] range (for ordered alphabets)
~a not a (everything except a)
. all of Σ

naming regular expressions (“regular definitions”)

digit = [0 − 9]
nat = digit+

signedNat = (+∣−)nat
number = signedNat(”.”nat)?(E signedNat)?

2.3 DFA

Finite-state automata

• simple “computational” machine
• (variations of) FSA’s exist in many flavors and under different names
• other well-known names include finite-state machines, finite labelled transition sys-

tems, . . .
• “state-and-transition” representations of programs or behaviors (finite state or else)

are wide-spread as well
– state diagrams
– Kripke-structures
– I/O automata
– Moore & Mealy machines

• the logical behavior of certain classes of electronic circuitry with internal memory
(“flip-flops”) is described by finite-state automata.

Historically, the design of electronic circuitry (not yet chip-based, though) was one of the
early very important applications of finite-state machines.

https://en.wikipedia.org/wiki/Saul_Kripke
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Remark 6 (Finite states). The distinguishing feature of FSA (as opposed to more powerful
automata models such as push-down automata, or Turing-machines), is that they have “
finitely many states ”. That sounds clear enough at first sight. But one has too be a bit more
careful. First of all, the set of states of the automaton, here called Q, is finite and fixed for
a given automaton, all right. But actually, the same is true for pushdown automata and
Turing machines! The trick is: if we look at the illustration of the finite-state automaton
earlier, where the automaton had a head. The picture corresponds to an accepting use
of an automaton, namely one that is fed by letters on the tape, moving internally from
one state to another, as controlled by the different letters (and the automaton’s internal
“logic”, i.e., transitions). Compared to the full power of Turing machines, there are two
restrictions, things that a finite state automaton cannot do

• it moves on one direction only (left-to-right)
• it is read-only.

All non-finite state machines have some additional memory they can use (besides q0, . . . , qn ∈
Q). Push-down automata for example have additionally a stack, a Turing machine is al-
lowed to write freely (= moving not only to the right, but back to the left as well) on the
tape, thus using it as external memory.

FSA

Definition 2.3.1 (FSA). A FSA A over an alphabet Σ is a tuple (Σ,Q, I,F, δ)
• Q: finite set of states
• I ⊆ Q, F ⊆ Q: initial and final states.
• δ ⊆ Q ×Σ ×Q transition relation

• final states: also called accepting states
• transition relation: can equivalently be seen as function δ ∶ Q×Σ→ 2Q: for each state

and for each letter, give back the set of sucessor states (which may be empty)
• more suggestive notation: q1

aÐ→ q2 for (q1, a, q2) ∈ δ
• we also use freely —self-evident, we hope— things like

q1
aÐ→ q2

bÐ→ q3

FSA as scanning machine?

• FSA have slightly unpleasant properties when considering them as decribing an actual
program (i.e., a scanner procedure/lexer)

• given the “theoretical definition” of acceptance:

The automaton eats one character after the other, and, when reading a letter, it moves to
a successor state, if any, of the current state, depending on the character at hand.

• 2 problematic aspects of FSA
– non-determinism: what if there is more than one possible successor state?
– undefinedness: what happens if there’s no next state for a given input

• the 2nd one is easily repaired, the 1st one requires more thought
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• [6]: recogniser corresponds to DFA

Non-determinism

Sure, one could try backtracking, but, trust us, you don’t want that in a scanner. And
even if you think it’s worth a shot: how do you scan a program directly from magnetic
tape, as done in the bad old days? Magnetic tapes can be rewound, of course, but winding
them back and forth all the time destroys hardware quickly. How should one scan network
traffic, packets etc. on the fly? The network definitely cannot be rewound. Of course,
buffering the traffic would be an option and doing then backtracking using the buffered
traffic, but maybe the packet-scanning-and-filtering should be done in hardware/firmware,
to keep up with today’s enormous traffic bandwith. Hardware-only solutions have no
dynamic memory, and therefore actually are ultimately finite-state machine with no extra
memory.

DFA: deterministic automata

Definition 2.3.2 (DFA). A deterministic, finite automaton A (DFA for short) over an
alphabet Σ is a tuple (Σ,Q, I,F, δ)

• Q: finite set of states
• I = {i} ⊆ Q, F ⊆ Q: initial and final states.
• δ ∶ Q ×Σ→ Q transition function

• transition function: special case of transition relation:
– deterministic
– left-total (“complete”)

For a relation, being left-total means, for each pair q, a from Q × Σ, δ(q, a) is defined.
When talking about functions (not relations), it simply means, the function is total, not
partial.

Some people call an automaton where δ is not a left-total but a determinstic relation (or,
equivalently, the function δ is not total, but partial) still a deterministic automaton. In
that terminology, the DFA as defined here would be determinstic and total.

Meaning of an FSA

The intended meaning of an FSA over an alphabet Σ is the set of all the finite words,
the automaton accepts.

Definition 2.3.3 (Accepted words and language of an automaton). A word c1c2 . . . cn
with ci ∈ Σ is accepted by automaton A over Σ, if there exists states q0, q2, . . . , qn from Q
such that

q0
c1Ð→ q1

c2Ð→ q2
c3Ð→ . . . qn−1

cnÐ→ qn ,

and were q0 ∈ I and qn ∈ F . The language of an FSA A, written L(A), is the set of all
words that A accepts.
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FSA example

q0 q1 q2

a

b

a

b

c

Example: identifiers

identifier = letter(letter ∣ digit)∗ (2.13)

start in_idletter

letter

digit

start in_id

error

letter

other

letter

digit
other

any

• transition function/relation δ not completely defined (= partial function)
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Automata for numbers: natural numbers

digit = [0 − 9]
nat = digit+

(2.14)

digit

digit

One might say, it’s not really the natural numbers, it’s about a decimal notation of natural
numbers (as opposed to other notations, for example Roman numeral notation). Note also
that initial zeroes are allowed here. It would be easy to disallow that.

Signed natural numbers

signednat = (+ ∣ −)nat ∣ nat (2.15)

+
−

digit

digit

digit

Again, the automaton is deterministic. It’s easy enough to come up with this automaton,
but the non-deterministic one is probably more straightforward to come by with. Basi-
cally, one informally does two “constructions”, the “alternative” which is simply writing
“two automata”, i.e., one automaton which consists of the union of the two automata, ba-
sically. In this example, it therefore has two initial states (which is disallowed obviously for
deterministic automata). Another implicit construction is the “sequential composition”.
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Signed natural numbers: non-deterministic

+
−

digit

digit

digit

digit

Fractional numbers

frac = signednat(”.”nat)? (2.16)

+−
digit

digit

digit

. digit

digit

Floats

digit = [0 − 9]
nat = digit+

signednat = (+ ∣ −)nat ∣ nat
frac = signednat(”.”nat)?

float = frac(E signednat)?

(2.17)

• Note: no (explicit) recursion in the definitions
• note also the treatment of digit in the automata.
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DFA for floats

+−
digit

digit

digit

.E

digit

digit

E

+−
digit

digit

digit

DFAs for comments

Pascal-style

{
other

}

C, C++, Java

/ ∗
other

∗
∗

other

/
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2.4 Implementation of DFA

Repeat frame: Example: identifiers

Implementation of DFA (1)

start in_id finishletter

letter

digit

[other]

Unlike the previous automaton, this one is deterministic, but it’s not total. The transition
function is only partial. The “missing” transitions are often not shown (to make the
pictures more compact). It is then implicitly assumed, that encountering a character not
covered by a transition leads to some extra “error” state (which also is not shown).

The [] around the transition other at the end means that the scanner does not move
forward on the input there (but the automaton proceeds to the accepting state). That
is something that is not 100% in the “mathematical theory” of FSA, but is how the
implementation in the scanner will behave. Note also that the accepting state has changed:
we have an extra state what we move to by the special kind of transition [other]. As the
name implies, “other” means all symbols different from the ones already covered by the
other outgoing edges. This (in this examples) is used to realized the longest prefix: The
shown DFA not just accepts “some” identifier it spots on the input, i.e., an arbitrary
sequence of letters and digits (starting with a letter). No, it takes as many letters and
digits as possible until it encounters a character not fitting the specification but not earlier.
Only at that point does the automaton accepts (but without advancing the input, in that
this character will have to be scanned and classified as the “next chunk” and this “the
next automaton”.

Implementation of DFA (1): “code”
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{ s t a r t i n g s t a t e }

i f the next cha rac t e r i s a l e t t e r
then

advance the input ;
{ now in s t a t e 2 }
while the next cha rac t e r i s a l e t t e r or d i g i t
do

advance the input ;
{ s tay in s t a t e 2 }

end while ;
{ go to s t a t e 3 , without advancing input }
accept ;

else
{ e r r o r or other ca s e s }

end

Explicit state representation

s t a t e := 1 { s t a r t }
while s t a t e = 1 or 2
do

case s t a t e of
1 : case input cha rac t e r of

l e t t e r : advance the input ;
s t a t e := 2

else s t a t e := . . . . { e r r o r or other } ;
end case ;

2 : case input cha rac t e r of
l e t t e r , d i g i t : advance the input ;

s t a t e := 2 ; { a c t ua l l y une s s e s sa ry }
else s t a t e := 3 ;
end case ;

end case ;
end while ;
i f s t a t e = 3 then accept else e r r o r ;

Table representation of a DFA

aaaaaaaa
state

input
char letter digit other

1 2
2 2 2 3
3
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Better table rep. of the DFA

aaaaaaaa
state

input
char letter digit other accepting

1 2 no
2 2 2 [3] no
3 yes

added info for

• accepting or not
• “ non-advancing ” transitions

– here: 3 can be reached from 2 via such a transition

Table-based implementation

s t a t e := 1 { s t a r t }
ch := next input cha rac t e r ;
while not Accept [ s t a t e ] and not e r r o r ( s t a t e )
do

while s t a t e = 1 or 2
do

newstate := T[ s ta te , ch ] ;
{ i f Advance [ s ta te , ch ]
then ch:=next input cha rac t e r } ;
s t a t e := newstate

end while ;
i f Accept [ s t a t e ] then accept ;

2.5 NFA

Non-deterministic FSA

Definition 2.5.1 (NFA (with ε transitions)). A non-deterministic finite-state automaton
(NFA for short) A over an alphabet Σ is a tuple (Σ,Q, I,F, δ), where

• Q: finite set of states
• I ⊆ Q, F ⊆ Q: initial and final states.
• δ ∶ Q ×Σ→ 2Q transition function

In case, one uses the alphabet Σ + {ε}, one speaks about an NFA with ε-transitions.

• in the following: NFA mostly means, allowing ε transitions11
• ε: treated differently than the “normal” letters from Σ.
• δ can equivalently be interpreted as relation: δ ⊆ Q×Σ×Q (transition relation labelled

by elements from Σ).
11It does not matter much anyhow, as we will see.
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Finite state machines

Remark 7 (Terminology (finite state automata)). There are slight variations in the def-
inition of (deterministic resp. non-deterministic) finite-state automata. For instance,
some definitions for non-deterministic automata might not use ε-transitions, i.e., defined
over Σ, not over Σ + {ε}. Another word for FSAs are finite-state machines. Chapter 2
in [9] builds in ε-transitions into the definition of NFA, whereas in Definition 2.5.1, we
mention that the NFA is not just non-deterministic, but “also” allows those specific tran-
sitions. Of course, ε-transitions lead to non-determinism, as well, in that they correspond
to “spontaneous” transitions, not triggered and determined by input. Thus, in the presence
of ε-transition, and starting at a given state, a fixed input may not determine in which
state the automaton ends up in.

Deterministic or non-deterministic FSA (and many, many variations and extensions thereof)
are widely used, not only for scanning. When discussing scanning, ε-transitions come in
handy, when translating regular expressions to FSA, that’s why [9] directly builds them in.

Language of an NFA

• remember L(A) (Definition 2.3.3 on page 35)
• applying definition directly to Σ + {ε}: accepting words “containing” letters ε
• as said: special treatment for ε-transitions/ε-“letters”. ε rather represents absence of

input character/letter.

Definition 2.5.2 (Acceptance with ε-transitions). A word w over alphabet Σ is accepted
by an NFA with ε-transitions, if there exists a word w′ which is accepted by the NFA with
alphabet Σ+ {ε} according to Definition 2.3.3 and where w is w′ with all occurrences of ε
removed.

Alternative (but equivalent) intuition

A reads one character after the other (following its transition relation). If in a state with
an outgoing ε-transition, A can move to a corresponding successor state without reading
an input symbol.

NFA vs. DFA

• NFA: often easier (and smaller) to write down, esp. starting from a regular expression
• non-determinism: not immediately transferable to an algo

a

ε

a

ε

ε

b

a

b b

b
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2.6 From regular expressions to NFAs (Thompson’s
construction)

Why non-deterministic FSA?

Task: recognize ∶=, <=, and = as three different tokens:

return ASSIGN

return LE

return EQ

∶ =

< =

=

FSA (1-2)

return ASSIGN

return LE

return EQ

∶
=

< =
=
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What about the following 3 tokens?

return LE

return NE

return LT

< =

< >

<

Non-det FSA (2-2)

return LE

return NE

return LT

<
=

< >
<

Non-det FSA (2-3)

return LE

return NE

return LT

<
=
>

[other]
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Regular expressions → NFA

• needed: a systematic translation (= algo, best an efficient one)
• conceptually easiest: translate to NFA (with ε-transitions)

– postpone determinization for a second step
– (postpone minimization for later, as well)

Compositional construction [11]

Design goal: The NFA of a compound regular expression is given by taking the NFA of
the immediate subexpressions and connecting them appropriately.

Compositionality

• construction slightly12 simpler, if one uses automata with one start and one accepting
state

⇒ ample use of ε-transitions

Compositionality

Remark 8 (Compositionality). Compositional concepts (definitions, constructions, anal-
yses, translations, . . . ) are immensely important and pervasive in compiler techniques
(and beyond). One example already encountered was the definition of the language of a
regular expression (see Definition 2.2.4 on page 30). The design goal of a compositional
translation here is the underlying reason why to base the construction on non-deterministic
machines.

Compositionality is also of practical importance (“component-based software”). In connec-
tion with compilers, separate compilation and (static / dynamic) linking (i.e. “compos-
ing”) of separately compiled “units” of code is a crucial feature of modern programming
languages/compilers. Separately compilable units may vary, sometimes they are called
modules or similarly. Part of the success of C was its support for separate compilation
(and tools like make that helps organizing the (re-)compilation process). For fairness sake,
C was by far not the first major language supporting separate compilation, for instance
FORTRAN II allowed that, as well, back in 1958.

Btw., Ken Thompson, the guy who first described the regexpr-to-NFA construction dis-
cussed here, is one of the key figures behind the UNIX operating system and thus also the
C language (both went hand in hand). Not suprisingly, considering the material of this
section, he is also the author of the grep -tool (“globally search a regular expression and
print”). He got the Turing-award (and many other honors) for his contributions.

12It does not matter much, though.
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Illustration for ε-transitions

return ASSIGN

return LE

return EQ

∶ =

< =

=

ε

ε

ε

Thompson’s construction: basic expressions

basic (= non-composed) regular expressions: ε, ∅, a (for all a ∈ Σ)

ε

a

The ∅ is slightly odd: it’s sometimes not part of regular expressions. We can see it as
represented as the empty automaton (which has no states and which therefore was not
drawn pictorially). If it’s lacking, then one cannot express the empty language, obviously.
That’s not nice, because then the regular languages are not closed under complement.
Also: obviously, there exists an automaton with an empty language. Therefore, ∅ should
be part of the regular expressions, even if practically it does not play much of a role.

The representation of ∅ as empty automaton is ok. If we do that, however, it’s not the
case that in Thompson’s construction all automata have one start and one final state, the
empty automaton would be an exception.
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Thompson’s construction: compound expressions

. . .r . . .sε

. . .r

. . .s

ε

ε

ε

ε

Thompson’s construction: compound expressions: iteration

. . .r

ε

ε

Example: ab ∣ a

a

a ε b
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1

2 3 4 5

8

6 7

ab ∣ a

ε

a ε b

ε

ε

a

ε

2.7 Determinization

Determinization: the subset construction

Main idea

• Given a non-det. automaton A. To construct a DFA A: instead of backtracking:
explore all successors “at the same time” ⇒

• each state q′ in A: represents a subset of states from A
• Given a word w: “feeding” that to A leads to the state representing all states of A

reachable via w

• side remark: this construction, known also as powerset construction, seems straight-
forward enough, but: analogous constructions works for some other kinds of au-
tomata, as well, but for others, the approach does not work.13

• origin of the construction: Rabin and Scott [10]

Some notation/definitions

Definition 2.7.1 (ε-closure, a-successors). Given a state q, the ε-closure of q, written
closeε(a), is the set of states reachable via zero, one, or more ε-transitions. We write qa
for the set of states, reachable from q with one a-transition. Both definitions are used
analogously for sets of states.
13For some forms of automata, non-deterministic versions are strictly more expressive than the determin-

istic one.



50 2 Scanning
2.7 Determinization

ε-closure

Remark 9 (ε-closure). [9] does not sketch an algorithm but it should be clear that the
ε-closure is easily implementable for a given state, resp. a given finite set of states. Some
textbooks also write λ instead of ε, and consequently speak of λ-closure. And in still other
contexts (mainly not in language theory and recognizers), silent transitions are marked
with τ .

It may be obvious but: the set of states in the ε-closure of a given state are not “language-
equivalent”. However, the union of languages for all states from the ε-closure corresponds
to the language accepted with the given state as initial one. However, the language being
accepted is not the property which is relevant here in the determinization. The ε-closure
is needed to capture the set of all states reachable by a given word. But again, the exact
characterization of the set need to be done carefully. The states in the set are also not
equivalent wrt. their reachability information: Obviously, states in the ε-closure of a given
state may be reached by more words. The set of reaching words for a given state, however,
is not in general the intersection of the sets of corresponding words of the states in the
closure.

It may also be worth remarking: later, when it comes to parsing, there will be similarly
the phenomenon that some derivation steps done in a grammar (not in an automaton)
will be done “eating symbols” (in the context, those symbols will be called “terminals”
or “terminal symbols”. That may pose problems for parsing (for some forms of parsing
more than for others). Such a situation can be compared with the treatment of “εs” in
the construction of a parser-automaton (there also called ε-closure).

Transformation process: sketch of the algo

Input: NFA A over a given Σ

Output: DFA A
1. the initial state: closeε(I), where I are the initial states of A
2. for a state Q in A: the a-successor of Q is given by closeε(Qa), i.e.,

Q
aÐ→ closeε(Qa) (2.18)

3. repeat step 2 for all states in A and all a ∈ Σ, until no more states are being added
4. the accepting states in A: those containing at least one accepting state of A

Note: Cooper and Torczon [6]: slightly more “concrete” formulation using a work-list.
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Example ab ∣ a

1

2 3 4 5

8

6 7

ab ∣ a

ε

a ε b

ε

ε

a

ε

{1,2,6} {3,4,7,8} {5,8} ab ∣ a
a b

Example: identifiers

Remember: regexpr for identifies from equation (2.13)

1 2 3 4

5 6

9

7 8

10letter ε ε

ε

ε

letter
ε

ε

ε
digit

ε

ε
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Identifiers: DFA

{1} {2,3,4,5,7,10}

{4,5,6,7,9,10}

{4,5,7,8,9,10}

letter

letter

digit

digitletter

letter

digit

2.8 Minimization

Minimization

• automatic construction of DFA (via e.g. Thompson): often many superfluous states
• goal: “combine” states of a DFA without changing the accepted language

1. Properties of the minimization algo
Canonicity: all DFA for the same language are transformed to the same DFA
Minimality: resulting DFA has minimal number of states

2. Remarks
• “side effects”: answers to equivalence problems

– given 2 DFA: do they accept the same language?
– given 2 regular expressions, do they describe the same language?

• modern version: Hopcroft [7].

Hopcroft’s partition refinement algo for minimization

• starting point: complete DFA (i.e., error-state possibly needed)
• first idea: equivalent states in the given DFA may be identified
• equivalent: when used as starting point, accepting the same language
• partition refinement:

– works “the other way around”
– instead of collapsing equivalent states:

∗ start by “collapsing as much as possible” and then,
∗ iteratively, detect non-equivalent states, and then split a “collapsed” state
∗ stop when no violations of “equivalence” are detected
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• partitioning of a set (of states):
• worklist: data structure of to keep non-treated classes, termination if worklist is

empty

Partition refinement: a bit more concrete

• Initial partitioning: 2 partitions: set containing all accepting states F , set containing
all non-accepting states Q/F

• Loop do the following: pick a current equivalence class Qi and a symbol a
– if for all q ∈ Qi, δ(q, a) is member of the same class Qj ⇒ consider Qi as done

(for now)
– else:

∗ split Qi into Q1
i , . . .Q

k
i s.t. the above situation is repaired for each Qli (but

don’t split more than necessary).
∗ be aware: a split may have a “cascading effect”: other classes being fine
before the split of Qi need to be reconsidered ⇒ worklist algo

• stop if the situation stabilizes, i.e., no more split happens (= worklist empty, at
latest if back to the original DFA)

Split in partition refinement: basic step

q1

q2

q3

q4

q5

q6

a
b

c
d

e

a

a

a

a
a

a

• before the split {q1, q2, . . . , q6}
• after the split on a: {q1, q2},{q3, q4, q5},{q6}
1. Note

The pic shows only one letter a, in general one has to do the same construction for
all letters of the alphabet.



54 2 Scanning
2.8 Minimization

Again: DFA for identifiers

Completed automaton

{1} {2,3,4,5,7,10}

{4,5,6,7,9,10}

{4,5,7,8,9,10}error

letter

letter

digit

digitletter

letter

digit

digit

Minimized automaton (error state omitted)

start in_idletter

letter

digit

Another example: partition refinement & error state

(a ∣ ε)b∗ (2.19)

1 2

3

a

b

b

b
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Partition refinement

error state added initial partitioning split after a

1 2

3 error

a

b

b

b

a

a

End result (error state omitted again)

{1} {2,3}
a

b

b

2.9 Scanner implementations and scanner generation tools

This last section contains only rather superficial remarks concerning how to implement
as scanner or lexer. A few more details can be found in [6, Section 2.5]. The oblig will
include the implementation of a lexer/scanner.
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Tools for generating scanners

• scanners: simple and well-understood part of compiler
• hand-coding possible
• mostly better off with: generated scanner
• standard tools lex / flex (also in combination with parser generators, like yacc /

bison
• variants exist for many implementing languages
• based on the results of this section

Main idea of (f)lex and similar

• output of lexer/scanner = input for parser
• programmer specifies regular expressions for each token-class and corresponding ac-

tions14 (and whitespace, comments etc.)
• the spec. language offers some conveniences (extended regexpr with priorities, asso-

ciativities etc) to ease the task
• automatically translated to NFA (e.g. Thompson)
• then made into a deterministic DFA (“subset construction”)
• minimized (with a little care to keep the token classes separate)
• implement the DFA (usually with the help of a table representation)

Sample flex file (excerpt)

1
2 DIGIT [0 −9 ]
3 ID [ a−z ] [ a−z0 −9]∗
4
5 %%
6
7 {DIGIT}+ {
8 p r i n t f ( "An integer : %s (%d)\n " , yytext ,
9 a t o i ( yytext ) ) ;

10 }
11
12 {DIGIT}+"."{DIGIT}∗ {
13 p r i n t f ( "A f l o a t : %s (%g )\n " , yytext ,
14 a to f ( yytext ) ) ;
15 }
16
17 i f | then | begin | end | procedure | function {
18 p r i n t f ( "A keyword : %s \n " , yytext ) ;
19 }

14Tokens and actions of a parser will be covered later. For example, identifiers and digits as described but
the reg. expressions, would end up in two different token classes, where the actual string of characters
(also known as lexeme) being the value of the token attribute.
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Grammars
Chapter

What
is it

about?
Learning Targets of this Chapter
1. (context-free) grammars + BNF
2. ambiguity and other properties
3. terminology: tokens, lexemes
4. different trees connected to

grammars/parsing
5. derivations, sentential forms

The chapter corresponds to [6,
Section 3.1–3.2] (or [9, Chapter 3]).

Contents

3.1 Introduction . . . . . . . . . . 57
3.2 Context-free grammars and

BNF notation . . . . . . . . . 60
3.3 Ambiguity . . . . . . . . . . . 69
3.4 Syntax of a “Tiny” language 80
3.5 Chomsky hierarchy . . . . . . 82

3.1 Introduction

Bird’s eye view of a parser

sequence
of to-
kens

Parser
tree
represen-
tation

• check that the token sequence correspond to a syntactically correct program
– if yes: yield tree as intermediate representation for subsequent phases
– if not: give understandable error message(s)

• we will encounter various kinds of trees
– derivation trees (derivation in a (context-free) grammar)
– parse tree, concrete syntax tree
– abstract syntax trees

• mentioned tree forms hang together, dividing line a bit fuzzy
• result of a parser: typically AST

(Context-free) grammars

• specifies the syntactic structure of a language
• here: grammar means CFG
• G derives word w
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Parsing

Given a stream of “symbols” w and a grammar G, find a derivation from G that produces
w

The slide talks about deriving “words”. In general, words are finite sequences of symbols
from a given alphabet (as was the case for regular languages). In the concrete picture
of a parser, the words are sequences of tokens, which are the elements that come out of
the scanner. A successful derivation leads to tree-like representations. There a various
slightly different forms of trees connected with grammars and parsing, which we will later
see in more detail; for a start now, we will just illustrate such tree-like structures, without
distinguishing between (abstract) syntax trees and parse trees.

Sample syntax tree

program

stmts

stmt

assign-stmt

expr

+

var

y

var

x

var

x

decs

val=vardec

Syntax tree

The displayed syntax tree is meant “impressionistic” rather then formal. Neither is it
a sample syntax tree of a real programming language, nor do we want to illustrate for
instance special features of an abstract syntax tree vs./ a concrete syntax tree (or a parse
tree). Those notions are closely related and corresponding trees might all looks similar
to the tree shown. There might, however, be subtle conceptual and representational
differences in the various classes of trees. Those are not relevant yet, at the beginning of
the section.
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Natural-language parse tree

S

NP

DT

The

N

dog

VP

V

bites

NP

NP

the

N

man

“Interface” between scanner and parser

• remember: task of scanner = “chopping up” the input char stream (throw away white
space, etc.) and classify the pieces (1 piece = lexeme)

• classified lexeme = token
• sometimes we use ⟨integer, ”42”⟩

– integer: “class” or “type” of the token, also called token name
– ”42” : value of the token attribute (or just value). Here: directly the lexeme (a

string or sequence of chars)
• a note on (sloppyness/ease of) terminology: often: the token name is simply just

called the token
• for (context-free) grammars: the token (symbol) corrresponds there to terminal

symbols (or terminals, for short)

Token names and terminals

Remark 10 (Token (names) and terminals). We said, that sometimes one uses the name
“token” just to mean token symbol, ignoring its value (like “42” from above). Especially,
in the conceptual discussion and treatment of context-free grammars, which form the core
of the specifications of a parser, the token value is basically irrelevant. Therefore, one
simply identifies “tokens = terminals of the grammar” and silently ignores the presence
of the values. In an implementation, and in lexer/parser generators, the value ”42” of an
integer-representing token must obviously not be forgotten, though . . .The grammar may
be the core of the specification of the syntactical analysis, but the result of the scanner,
which resulted in the lexeme ”42” must nevertheless not be thrown away, it’s only not really
part of the parser’s tasks.
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Notations

Remark 11. Writing a compiler, especially a compiler front-end comprising a scanner
and a parser, but to a lesser extent also for later phases, is about implementing repre-
sentation of syntactic structures. The slides here don’t implement a lexer or a parser or
similar, but describe in a hopefully unambiguous way the principles of how a compiler front
end works and is implemented. To describe that, one needs “language” as well, such as
English language (mostly for intuitions) but also “mathematical” notations such as regu-
lar expressions, or in this section, context-free grammars. Those mathematical definitions
have themselves a particular syntax. One can see them as formal domain-specific lan-
guages to describe (other) languages. One faces therefore the (unavoidable) fact that one
deals with two levels of languages: the language that is described (or at least whose syntax
is described) and the language used to descibe that language. The situation is, of course,
when writing a book teaching a human language: there is a language being taught, and
a language used for teaching (both may be different). More closely, it’s analogous when
implementing a general purpose programming language: there is the language used to im-
plement the compiler on the one hand, and the language for which the compiler is written
for. For instance, one may choose to implement a C++-compiler in C. It may increase
the confusion, if one chooses to write a C compiler in C . . . . Anyhow, the language for
describing (or implementing) the language of interest is called the meta-language, and the
other one described therefore just “the language”.

When writing texts or slides about such syntactic issues, typically one wants to make
clear to the reader what is meant. One standard way are typographic conventions, i.e.,
using specific typographic fonts. I am stressing “nowadays” because in classic texts in
compiler construction, sometimes the typographic choices were limited (maybe written as
“typoscript”, i.e., as “manuscript” on a type writer).

3.2 Context-free grammars and BNF notation

Grammars

• in this chapter(s): focus on context-free grammars
• thus here: grammar = CFG
• as in the context of regular expressions/languages: language = (typically infinite) set

of words
• grammar = formalism to unambiguously specify a language
• intended language: all syntactically correct programs of a given progamming lan-

guage

Slogan

A CFG describes the syntax of a programming language. 1

1And some say, regular expressions describe its microsyntax.
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Note: a compiler might reject some syntactically correct programs, whose violations can-
not be captured by CFGs. That is done by subsequent phases. For instance, the type
checker may reject syntactically correct programs that are ill-typed. The type checker is
an important part from the semantic phase (or static analysis phase). A typing discipline
is not a syntactic property of a language (in that it cannot captured most commonly by
a context-free grammar), it’s therefore a “semantics” property.

Remarks on grammars

Sometimes, the word “grammar” is synonymously for context-free grammars, as CFGs
are so central. However, the concept of grammars is more general; there exists context-
sensitive and Turing-expressive grammars, both more expressive than CFGs. Also a re-
stricted class of CFG correspond to regular expressions/languages. Seen as a grammar,
regular expressions correspond so-called left-linear grammars (or alternativelty, right-linear
grammars), which are a special form of context-free grammars.

Context-free grammar

Definition 3.2.1 (CFG). A context-free grammar G is a 4-tuple G = (ΣT ,ΣN , S,P ):
1. 2 disjoint finite alphabets of terminals ΣT and
2. non-terminals ΣN

3. 1 start-symbol S ∈ ΣN (a non-terminal)
4. productions P = finite subset of ΣN × (ΣN +ΣT )∗
• terminal symbols: corresponds to tokens in parser = basic building blocks of syntax
• non-terminals: (e.g. “expression”, “while-loop”, “method-definition” . . . )
• grammar: generating (via “derivations”) languages
• parsing: the inverse problem⇒ CFG = specification

Further notions

• sentence and sentential form
• productions (or rules)
• derivation
• language of a grammar L(G)
• parse tree

Those notions will be explained with the help of examples.
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BNF notation

• popular & common format to write CFGs, i.e., describe context-free languages
• named after pioneering (seriously) work on Algol 60
• notation to write productions/rules + some extra meta-symbols for convenience and

grouping

Slogan: Backus-Naur form

What regular expressions are for regular languages is BNF for context-free languages.

“Expressions” in BNF

exp → exp op exp ∣ ( exp ) ∣ number
op → + ∣ − ∣ ∗

(3.1)

• “→” indicating productions and “ ∣ ” indicating alternatives 2

• convention: terminals written boldface, non-terminals italic
• also simple math symbols like “+” and “(′′ are meant above as terminals
• start symbol here: exp
• remember: terminals like number correspond to tokens, resp./ token classes. The

attributes/token values are not relevant here.

Terminals

Conventions are not always 100% followed, often bold fonts for symbols such as + or ( are
unavailable or not easily visible. The alternative using, for instance, boldface “identifiers”
like PLUS and LPAREN looks ugly. Some books would write ’+’ and ’(’.

In a concrete parser implementation, in an object-oriented setting, one might choose to
implement terminals as classes (resp. concrete terminals as instances of classes). In that
case, a class name + is typically not available and the class might be named Plus. Later
we will have a look at how to systematically implement terminals and non-terminals, and
having a class Plus for a non-terminal ‘+’ etc. is a systematic way of doing it (maybe
not the most efficient one available though).

Most texts don’t follow conventions so slavishly and hope for an intuitive understanding
by the educated reader, that + is a terminal in a grammar, as it’s not a non-terminal,
which are written here in italics.

2The grammar consists of 6 productions/rules, 3 for expr and 3 for op, the ∣ is just for convenience.
Side remark: Often also ∶∶= is used for →.

https://en.wikipedia.org/wiki/ALGOL_60
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Different notations

• BNF: notationally not 100% “standardized” across books/tools
• “classic” way (Algol 60):

<exp> : := <exp> <op> <exp>
| ( <exp> )
| NUMBER

<op> : := + | − | ∗

• Extended BNF (EBNF) and yet another style

exp → exp ( ” + ” ∣ ” − ” ∣ ” ∗ ” ) exp∣ ”(” exp ”)” ∣ ”number”
(3.2)

• note: parentheses as terminals vs. as metasymbols

“Standard” BNF

Specific and unambiguous notation is important, in particular if you implement a concrete
language on a computer. On the other hand: understanding the underlying concepts by
humans is equally important. In that way, bureaucratically fixed notations may distract
from the core, which is understanding the principles. XML, anyone? Most textbooks (and
we) rely on simple typographic conventions (boldfaces, italics). For “implementations” of
BNF specification (as in tools like yacc), the notations, based mostly on ASCII, cannot
rely on such typographic conventions.

Syntax of BNF

BNF and its variations is a notation to describe “languages”, more precisely the “syntax”
of context-free languages. Of course, BNF notation, when exactly defined, is a language
in itself, namely a domain-specific language to describe context-free languages. It may
be instructive to write a grammar for BNF in BNF, i.e., using BNF as meta-language to
describe BNF notation (or regular expressions). Is it possible to use regular expressions
as meta-language to describe regular expression?

Different ways of writing the same grammar

• directly written as 6 pairs (6 rules, 6 productions) from ΣN × (ΣN ∪ΣT )∗, with “→”
as nice looking “separator”:

exp → exp op exp
exp → ( exp )

exp → number
op → +

op → −

op → ∗

(3.3)
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• choice of non-terminals: irrelevant (except for human readability):

E → E O E ∣ (E ) ∣ number
O → + ∣ − ∣ ∗

(3.4)

• still: we count 6 productions

Grammars as language generators

Deriving a word:

Start from start symbol. Pick a “matching” rule to rewrite the current word to a new one;
repeat until terminal symbols, only.

• non-deterministic process
• rewrite relation for derivations:

– one step rewriting: w1 ⇒ w2
– one step using rule n: w1 ⇒n w2
– many steps: ⇒∗ , etc.

Non-determinism means, that the process of derivation allows choices to be made, when
applying a production. One can distinguish 2 forms of non-determinism here: 1) a senten-
tial form contains (most often) more than one non-terminal. In that situation, one has the
choice of expanding one non-terminal or the other. 2) Besides that, there may be more
than one production or rule for a given non-terminal. Again, one has a choice.

As far as 1) is concerned. whether one expands one symbol or the other leads to different
derivations, but won’t lead to different derivation trees or parse trees in the end. Below,
we impose a fixed discipline on where to expand. That leads to left-most or right-most
derivations.

Language of grammar G

L(G) = {s ∣ start ⇒∗ s and s ∈ Σ∗
T }

Example derivation for (number−number)∗number

exp ⇒ exp op exp⇒ (exp)op exp⇒ (exp op exp)op exp⇒ (n op exp)op exp⇒ (n−exp)op exp⇒ (n−n)op exp⇒ (n−n)∗exp⇒ (n−n)∗n
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• underline the “place” where a rule is used, i.e., an occurrence of the non-terminal
symbol is being rewritten/expanded

• here: leftmost derivation3

Rightmost derivation

exp ⇒ exp op exp⇒ exp op n⇒ exp∗n⇒ (exp op exp)∗n⇒ (exp op n)∗n⇒ (exp−n)∗n⇒ (n−n)∗n

• other (“mixed”) derivations for the same word possible

Some easy requirements for reasonable grammars

• all symbols (terminals and non-terminals): should occur in a some word derivable
from the start symbol

• words containing only non-terminals should be derivable
• an example of a silly grammar G (start-symbol A)

A → Bx
B → Ay
C → z

• L(G) = ∅
• those “sanitary conditions”: minimal “common sense” requirements

Remark 12. There can be further conditions one would like to impose on grammars
besides the one sketched. A CFG that derives ultimately only 1 word of terminals (or a
finite set of those) does not make much sense either. There are further conditions on gram-
mar characterizing their usefulness for parsing. So far, we mentioned just some obvious
conditions of “useless” grammars or “defects” in a grammer (like superfluous symbols).
“Usefulness conditions” may refer to the use of ε-productions and other situations. Those
conditions will be discussed when the lecture covers parsing (not just grammars).

Remark 13 (“Easy” sanitary conditions for CFGs). We stated a few conditions to avoid
grammars which technically qualify as CFGs but don’t make much sense, for instance to
avoid that the grammar is obviously empty; there are easier ways to describe an empty set
. . .

There’s a catch, though: it might not immediately be obvious that, for a given G, the
question L(G) =? ∅ is decidable!

3We’ll come back to that later, it will be important.
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Whether a regular expression describes the empty language is trivially decidable. Whether
or not a finite state automaton descibes the empty language or not is, if not trivial, then
at least a very easily decidable question. For context-sensitive grammars (which are more
expressive than CFG but not yet Turing complete), the emptyness question turns out to be
undecidable. Also, other interesting questions concerning CFGs are, in fact, undecidable,
like: given two CFGs, do they describe the same language? Or: given a CFG, does
it actually describe a regular language? Most disturbingly perhaps: given a grammar,
it’s undecidable whether the grammar is ambiguous or not. So there are interesting and
relevant properties concerning CFGs which are undecidable. Why that is, is not part of
the pensum of this lecture (but we will at least have to deal with the important concept
of grammatical ambiguity later). Coming back for the initial question: fortunately, the
emptyness problem for CFGs is decidable.

Questions concerning decidability may seem not too relevant at first sight. Even if some
grammars can be constructed to demonstrate difficult questions, for instance related to
decidability or worst-case complexity, the designer of a language will not intentionally try
to achieve an obscure set of rules whose status is unclear, but hopefully strive to capture in
a clear manner the syntactic principles of an equally hopefully clearly structured language.
Nonetheless: grammars for real languages may become large and complex, and, even if
conceptually clear, may contain unexpected bugs which makes them behave unexpectedly
(for instance caused by a simple typo in one of the many rules).

In general, the implementor of a parser will often rely on automatic tools (“parser gener-
ators”) which take as an input a CFG and turns it in into an implementation of a recog-
nizer, which does the syntactic analysis. Such tools obviously can reliably and accurately
help the implementor of the parser automatically only for problems which are decidable.
For undecidable problems, one could still achieve things automatically, provided one would
compromise by not insisting that the parser always terminates (but that’s generally is seen
as unacceptable), or at the price of approximative answers. It should also be mentioned
that parser generators typcially won’t tackle CFGs in their full generality but are tailor-
made for well-defined and well-understood subclasses thereof, where efficient recognizers
are automaticlly generatable. In the part about parsing, we will cover some such classes.

Parse tree

• derivation: if viewed as sequence of steps ⇒ linear “structure”
• order of individual steps: irrelevant
• ⇒ order not needed for subsequent steps
• parse tree: structure for the essence of derivation
• also called concrete syntax tree.4

1 exp

2 exp

n

3 op

+

4 exp

n
4There will be abstract syntax trees, as well.
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• numbers in the tree
– not part of the parse tree, indicate order of derivation, only
– here: leftmost derivation

Another parse tree (numbers for rightmost derivation)

1 exp

4 exp

( 5 exp

8 exp

n

7 op

−

6 exp

n

)

3 op

∗

2 exp

n

Abstract syntax tree

• parse tree: contains still unnecessary details
• specifically: parentheses or similar, used for grouping
• tree-structure: can express the intended grouping already
• remember: tokens contain also attribute values (e.g.: full token for token class n may

contain lexeme like ”42” . . . )

1 exp

2 exp

n

3 op

+

4 exp

n

+

3 4

AST vs. CST

• parse tree
– important conceptual structure, to talk about grammars and derivations
– most likely not explicitly implemented in a parser

• AST is a concrete data structure
– important IR of the syntax (for the language being implemented)
– written in the meta-language
– therefore: nodes like + and 3 are no longer (necessarily and directly) tokens or

lexemes
– concrete data stuctures in the meta-language (C-structs, instances of Java classes,

or what suits best)
– the figure is meant schematic, only
– produced by the parser, used by later phases
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– note also: we use 3 in the AST, where lexeme was "3"⇒ at some point, the lexeme string (for numbers) is translated to a number in the
meta-language (typically already by the lexer)

Plausible schematic AST (for the other parse tree)

*

-

34 3

42

• this AST: rather “simplified” version of the CST
• an AST closer to the CST (just dropping the parentheses): in principle nothing

“wrong” with it either

Conditionals

Conditionals G1

stmt → if -stmt ∣ other
if -stmt → if ( exp ) stmt∣ if ( exp ) stmt else stmt

exp → 0 ∣ 1

(3.5)

Parse tree

if ( 0 ) other else other

stmt

if -stmt

if ( exp

0

) stmt

other

else stmt

other
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Another grammar for conditionals

Conditionals G2

stmt → if -stmt ∣ other
if -stmt → if ( exp ) stmt else−part

else−part → else stmt ∣ ε
exp → 0 ∣ 1

(3.6)

Abbreviation

ε = empty word

A further parse tree + an AST

stmt

if -stmt

if ( exp

0

) stmt

other

else−part

else stmt

other

COND

0 other other

A potentially missing else part may be represented by null-“pointers” in languages like
Java

3.3 Ambiguity

Before we mentioned some “easy” conditions to avoid “silly” grammars, without going into
it. Ambiguity is more important and complex. Roughly speaking, a grammar is ambiguous,
if there exist sentences for which there are two different parse trees. That’s in general
highly undesirable, as it means there are sentences with different syntactic interpretations
(which therefore may ultimately interpreted differently). That is generally a no-no, but
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even if one would accept such a language definition, parsing would be problematic, as
it would involve backtracking trying out different possible interpretations during parsing
(which would also be a no-no for reasons of efficiency) In fact, later, when dealing with
actual concrete parsing procedures, they cover certain specific forms of CFG (with names
like LL(1), LR(1), etc.), which are in particular non-ambiguous. To say it differently: the
fact that a grammar is parseable by some, say, LL(1) top-down parser (which does not
do backtracking) implies directly that the grammar is unambiguous. Similar for the other
classes we’ll cover.

Note also: given an ambiguous grammar, it is often possible to find a different “equivalent”
grammar that is unambiguous. Even if such reformulations are often possible, it’s not
guaranteed: there are context-free languages which do have an ambiguous grammar, but
no unambigous one. In that case, one speaks of an ambiguous context-free language. We
concentrate on ambiguity of grammars.

Tempus fugit . . .

picture source: wikipedia

Ambiguous grammar

Definition 3.3.1 (Ambiguous grammar). A grammar is ambiguous if there exists a word
with two different parse trees.

Remember grammar from equation (3.1):

exp → exp op exp ∣ ( exp ) ∣ number
op → + ∣ − ∣ ∗

Consider:

n−n∗n
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2 CTS’s

exp

exp

exp

n

op

−

exp

n

op

∗

exp

n

exp

exp

n

op

−

exp

exp

n

op

∗

exp

n

2 resulting ASTs

∗

−

34 3

42

−

34 ∗

3 42

different parse trees ⇒ different5 ASTs ⇒ different5 meaning

Side remark: different meaning

The issue of “different meaning” may in practice be subtle: is (x + y) − z the same as
x + (y − z)? In principle yes, but what about MAXINT ?

Precendence & associativity

• one way to make a grammar unambiguous (or less ambiguous)
• for instance:

binary op’s precedence associativity+, − low left×, / higher left↑ highest right

5At least in many cases.



72 3 Grammars
3.3 Ambiguity

• a ↑ b written in standard math as ab:

5 + 3/5 × 2 + 4 ↑ 2 ↑ 3 =
5 + 3/5 × 2 + 423 =(5 + ((3/5 × 2)) + (4(23))) .

• mostly fine for binary ops, but usually also for unary ones (postfix or prefix)

Unambiguity without imposing explicit associativity and precedence

• removing ambiguity by reformulating the grammar
• precedence for op’s: precedence cascade

– some bind stronger than others (∗ more than +)
– introduce separate non-terminal for each precedence level (here: terms and fac-

tors)

Expressions, revisited

• associativity
– left-assoc: write the corresponding rules in left-recursive manner, e.g.:

exp → exp addop term ∣ term

– right-assoc: analogous, but right-recursive
– non-assoc:

exp → term addop term ∣ term

factors and terms

exp → exp addop term ∣ term
addop → + ∣ −

term → term mulop factor ∣ factor
mulop → ∗

factor → ( exp ) ∣ number

(3.7)

34 − 3 ∗ 42

exp

exp

term

factor

n

addop

−

term

term

factor

n

mulop

∗

factor

n
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34 − 3 − 42

exp

exp

exp

term

factor

n

addop

−

term

factor

n

addop

−

term

factor

n

Ambiguity

As mentioned, the question whether a given CFG is ambiguous or not is undecidable.
Note also: if one uses a parser generator, such as yacc or bison (which cover a practically
usefull subset of CFGs), the resulting recognizer is always deterministic. In case the
construction encounters ambiguous situations, they are “resolved” by making a specific
choice. Nonetheless, such ambiguities indicate often that the formulation of the grammar
(or even the language it defines) has problematic aspects. Most programmers as “users” of
a programming language may not read the full BNF definition, most will try to grasp the
language looking at sample code pieces mentioned in the manual, etc. And even if they
bother studying the exact specification of the system, i.e., the full grammar, ambiguities
are not obvious (after all, it’s undecidable, at least the problem in general). Hidden
ambiguities, “resolved” by the generated parser, may lead to misconceptions as to what
a program actually means. It’s similar to the situation, when one tries to study a book
with arithmetic being unaware that multiplication binds stronger than addition. Without
being aware of that, some sections won’t make much sense. A parser implementing such
grammars may make consistent choices, but the programmer using the compiler may not
be aware of them. At least the compiler writer, responsible for designing the language,
will be informed about “conflicts” in the grammar and a careful designer will try to
get rid of them. This may be done by adding associativities and precedences (when
appropriate) or reformulating the grammar, or even reconsider the syntax of the language.
While ambiguities and conflicts are generally a bad sign, arbitrarily adding a complicated
“precedence order” and “associativities” on all kinds of symbols or complicate the grammar
adding ever more separate classes of nonterminals just to make the conflicts go away is
not a real solution either. Chances are, that those parser-internal “tricks” will be lost
on the programmer as user of the language, as well. Sometimes, making the language
simpler (as opposed to complicate the grammar for the same language) might be the
better choice. That can typically be done by making the language more verbose and
reducing “overloading” of syntax. Of course, going overboard by making groupings etc./
of all constructs crystal clear to the parser, may also lead to non-elegant designs. Lisp is
a standard example, notoriously known for its extensive use of parentheses. Basically, the
programmer directly writes down syntax trees, which certainly removes ambiguities, but
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still, mountains of parentheses are also not the easiest syntax for human consumption (for
most humans, at least). So it’s a balance (and at least partly a matter of taste, as for
most design choices and questions of language pragmatics).

But in general: if it’s enormously complex to come up with a reasonably unambigous
grammar for an intended language, chances are, that reading programs in that language
and intutively grasping what is intended may be hard for humans, too.

Note also: since already the question, whether a given CFG is ambiguous or not is un-
decidable, it should be clear, that the following question is undecidable, as well: given a
grammar, can I reformulate it, still accepting the same language, that it becomes unam-
biguous?

Real life example



3 Grammars
3.3 Ambiguity 75

Another example

Non-essential ambiguity

left-assoc

stmt-seq → stmt-seq ; stmt ∣ stmt
stmt → S

stmt-seq

stmt-seq

stmt-seq

stmt

S

; stmt

S

; stmt

S
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Non-essential ambiguity (2)

right-assoc representation instead

stmt-seq → stmt ; stmt-seq ∣ stmt
stmt → S

stmt-seq

stmt

S

; stmt-seq

stmt

S

; stmt-seq

stmt

S

Possible AST representations

Seq

S S S

Seq

S S S

Dangling else

Nested if’s

if (0 ) if (1 )other else other

Remember grammar from equation (3.5):

stmt → if -stmt ∣ other
if -stmt → if ( exp ) stmt∣ if ( exp ) stmt else stmt

exp → 0 ∣ 1
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Should it be like this . . .

stmt

if -stmt

if ( exp

0

) stmt

if -stmt

if ( exp

1

) stmt

other

else stmt

other

. . . or like this

stmt

if -stmt

if ( exp

0

) stmt

if -stmt

if ( exp

1

) stmt

other

else stmt

other

• common convention: connect else to closest “free” (= dangling) occurrence

Unambiguous grammar

Grammar

stmt → matched_stmt ∣ unmatch_stmt
matched_stmt → if ( exp )matched_stmt else matched_stmt∣ other
unmatch_stmt → if ( exp ) stmt∣ if ( exp )matched_stmt else unmatch_stmt

exp → 0 ∣ 1

• never have an unmatched statement inside a matched one
• complex grammar, seldomly used
• instead: ambiguous one, with extra “rule”: connect each else to closest free if
• alternative: different syntax, e.g.,
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– mandatory else,
– or require endif

CST

stmt

unmatch_stmt

if ( exp

0

) stmt

matched_stmt

if ( exp

1

) elsematched_stmt

other

Adding sugar: extended BNF

• make CFG-notation more “convenient” (but without more theoretical expressiveness)
• syntactic sugar

EBNF

Main additional notational freedom: use regular expressions on the rhs of productions.
They can contain terminals and non-terminals.

• EBNF: officially standardized, but often: all “sugared” BNFs are called EBNF
• in the standard:

– α∗ written as {α}
– α? written as [α]

• supported (in the standardized form or other) by some parser tools, but not in all
• remember equation (3.2)
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EBNF examples

A → β{α} for A→ Aα ∣ β
A → {α}β for A→ αA ∣ β

stmt-seq → stmt {; stmt}
stmt-seq → {stmt ;} stmt

if -stmt → if ( exp ) stmt[else stmt]

greek letters: for non-terminals or terminals.

Some yacc style grammar

/∗ I n f i x n o t a t i o n c a l c u l a t o r −− c a l c ∗/
%{
#define YYSTYPE double
#include <math . h>
%}

/∗ BISON D e c l a r a t i o n s ∗/
%token NUM
%l e f t '− ' '+ '
%l e f t ' ∗ ' ' / '
%l e f t NEG /∗ n e g a t i o n −−unary minus ∗/
%r i g h t ' ^ ' /∗ e x p o n e n t i a t i o n ∗/

/∗ Grammar f o l l o w s ∗/
%%
input : /∗ empty s t r i n g ∗/

| input l i n e
;

l i n e : ' \n '
| exp ' \n ' { p r i n t f ( " \ t %.10g\n " , $1 ) ; }

;

exp : NUM { $$ = $1 ; }
| exp '+ ' exp { $$ = $1 + $3 ; }
| exp '− ' exp { $$ = $1 − $3 ; }
| exp ' ∗ ' exp { $$ = $1 ∗ $3 ; }
| exp ' / ' exp { $$ = $1 / $3 ; }
| '− ' exp %prec NEG { $$ = −$2 ; }
| exp ' ^ ' exp { $$ = pow ( $1 , $3 ) ; }
| ' ( ' exp ' ) ' { $$ = $2 ; }

;
%%
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3.4 Syntax of a “Tiny” language

BNF-grammar for TINY

program → stmt-seq
stmt-seq → stmt-seq ; stmt ∣ stmt

stmt → if -stmt ∣ repeat-stmt ∣ assign-stmt∣ read-stmt ∣ write-stmt
if -stmt → if expr then stmt end∣ if expr then stmt else stmt end

repeat-stmt → repeat stmt-seq until expr
assign-stmt → identifier ∶= expr

read-stmt → read identifier
write-stmt → write expr

expr → simple-expr comparison-op simple-expr ∣ simple-expr
comparison-op → < ∣ =

simple-expr → simple-expr addop term ∣ term
addop → + ∣ −

term → term mulop factor ∣ factor
mulop → ∗ ∣ /

factor → ( expr ) ∣ number ∣ identifier

Syntax tree nodes

typedef enum {StmtK,ExpK} NodeKind;
typedef enum {IfK,RepeatK,AssignK,ReadK,WriteK} StmtKind;
typedef enum {OpK,ConstK,IdK} ExpKind;

/* ExpType is used for type checking */
typedef enum {Void,Integer,Boolean} ExpType;

#define MAXCHILDREN 3

typedef struct treeNode
{ struct treeNode * child[MAXCHILDREN];

struct treeNode * sibling;
int lineno;
NodeKind nodekind;
union { StmtKind stmt; ExpKind exp;} kind;
union { TokenType op;

int val;
char * name; } attr;

ExpType type; /* for type checking of exps */

Comments on C-representation

• typical use of enum type for that (in C)
• enum’s in C can be very efficient
• treeNode struct (records) is a bit “unstructured”
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• newer languages/higher-level than C: better structuring advisable, especially for languages
larger than Tiny.

• in Java-kind of languages: inheritance/subtyping and abstract classes/interfaces often used
for better structuring

Sample Tiny program

read x; { input as integer }
if 0 < x then { don't compute if x <= 0 }

fact := 1;
repeat

fact := fact * x;
x := x -1

until x = 0;
write fact { output factorial of x }

end

Same Tiny program again

read x ; { input as i n t e g e r }
i f 0 < x then { don ' t compute i f x <= 0 }

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
write f a c t { output f a c t o r i a l o f x }

end

• keywords / reserved words highlighted by bold-face type setting
• reserved syntax like 0, :=, . . . is not bold-faced
• comments are italicized
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Abstract syntax tree for a tiny program

Some questions about the Tiny grammy

• is the grammar unambiguous?
• How can we change it so that the Tiny allows empty statements?
• What if we want semicolons in between statements and not after?
• What is the precedence and associativity of the different operators?

3.5 Chomsky hierarchy

The Chomsky hierarchy

• linguist Noam Chomsky [5]
• important classification of (formal) languages (sometimes Chomsky-Sch/"utzenberger)
• 4 levels: type 0 languages – type 3 languages
• levels related to machine models that generate/recognize them
• so far: regular languages and CF languages

Overview

rule format languages machines closed
3 A→ aB , A→ a regular NFA, DFA all
2 A→ α1βα2 CF pushdown

automata
∪, ∗, ○

1 α1Aα2 → α1βα2 context-
sensitive

(linearly re-
stricted au-
tomata)

all

0 α → β, α /= ε recursively
enumerable

Turing ma-
chines

all, except
complement
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Conventions

• terminals a, b, . . . ∈ ΣT ,
• non-terminals A,B, . . . ∈ ΣN

• general words α,β . . . ∈ (ΣT ∪ΣN)∗
Remark: Chomsky hierarchy

The rule format for type 3 languages (= regular languages) is also called right-linear. Alternatively,
one can use left-linear rules. If one mixes right- and left-linear rules, one leaves the class of regular
languages. The rule-format above allows only one terminal symbol. In principle, if one had
sequences of terminal symbols in a right-linear (or else left-linear) rule, that would be ok too.

Phases of a compiler & hierarchy

“Simplified” design?

1 big grammar for the whole compiler? Or at least a CSG for the front-end, or a CFG combining
parsing and scanning?

theoretically possible, but bad idea:

• efficiency
• bad design
• especially combining scanner + parser in one BNF:

– grammar would be needlessly large
– separation of concerns: much clearer/ more efficient design

• for scanner/parsers: regular expressions + (E)BNF: simply the formalisms of choice!
– front-end needs to do more than checking syntax, CFGs not expressive enough
– for level-2 and higher: situation gets less clear-cut, plain CSG not too useful for compilers
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Parsing
Chapter

What
is it

about?
Learning Targets of this Chapter
1. (context-free) grammars + BNF
2. ambiguity and other properties
3. terminology: tokens, lexemes,
4. different trees connected to

grammars/parsing
5. derivations, sentential forms

The chapter corresponds to [6, Section
3.1–3.2] (or [9, Chapter 3]).

Contents

4.1 Introduction to parsing . . . 84
4.2 Top-down parsing . . . . . . 87
4.3 First and follow sets . . . . . 94
4.4 LL-parsing (mostly LL(1)) . 114
4.5 Bottom-up parsing . . . . . . 137
4.6 Material from [6] . . . . . . . 186

4.1 Introduction to parsing

What’s a parser generally doing

task of parser = syntax analysis

• input: stream of tokens from lexer
• output:

– abstract syntax tree
– or meaningful diagnosis of source of syntax error

• the full “power” (i.e., expressiveness) of CFGs not used
• thus:

– consider restrictions of CFGs, i.e., a specific subclass, and/or
– represented in specific ways (no left-recursion, left-factored . . . )

Syntax errors (and other errors)

Since almost by definition, the syntax of a language are those aspects covered by a context-free
grammar, a syntax error thereby is a violation of the grammar, something the parser has to detect.
Given a CFG, typically given in BNF resp. implemented by a tool supporting a BNF variant, the
parser (in combination with the lexer) must generate an AST exactly for those programs that
adhere to the grammar and must reject all others. One says, the parser recognizes the given
grammar. An important practical part when rejecting a program is to generate a meaningful error
message, giving hints about potential locations of the error and potential reasons. In the most
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minimal way, the parser should inform the programmer where the parser tripped, i.e., telling how
far, from left to right, it was able to proceed and informing where it stumbled: “parser error in
line xxx/at character position yyy”). One typically has higher expectations for a real parser than
just the line number, but that’s the basics.

It may be noted that also the subsequent phase, the semantic analysis, which takes the abstract
syntax tree as input, may report errors, which are then no longer syntax errors but more complex
kind of errors. One typical kind of error in the semantic phase is a type error. Also there, the
minimal requirement is to indicate the probable location(s) where the error occurs. To do so, in
basically all compilers, the nodes in an abstract syntax tree will contain information concerning the
position in the original file the resp./ node corresponds to (like line-numbers, character positions).
If the parser would not add that information into the AST, the semantic analysis would have no
way to relate potential errors it finds to the original, concrete code in the input. Remember: the
compiler goes in phases, and once the parsing phase is over, there’s no going back to scan the file
again.

Lexer, parser, and the rest

lexer parser rest of the
front end

symbol table

source
program

tokentoken

get next

token

parse tree interm.
rep.

Top-down vs. bottom-up

• all parsers (together with lexers): left-to-right
• remember: parsers operate with trees

– parse tree (concrete syntax tree): representing grammatical derivation
– abstract syntax tree: data structure

• 2 fundamental classes
• while parser eats through the token stream, it grows, i.e., builds up (at least conceptually)

the parse tree:

Bottom-up

Parse tree is being grown from the leaves to the root.

Top-down

Parse tree is being grown from the root to the leaves.
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AST

• while parse tree mostly conceptual: parsing builds up the concrete data structure of AST
bottom-up vs. top-down.

Parsing restricted classes of CFGs

• parser: better be “efficient”
• full complexity of CFLs: not really needed in practice
• classification of CF languages vs. CF grammars, e.g.:

– left-recursion-freedom: condition on a grammar
– ambiguous language vs. ambiguous grammar

• classification of grammars ⇒ classification of languages
– a CF language is (inherently) ambiguous, if there’s no unambiguous grammar for it
– a CF language is top-down parseable, if there exists a grammar that allows top-down

parsing . . .

• in practice: classification of parser generating tools:
– based on accepted notation for grammars: (BNF or some form of EBNF etc.)

Concerning the need (or the lack of need) for very expressive grammars, one should consider the
following: if a parser has trouble to figure out if a program has a syntax error or not (perhaps
using back-tracking), probably humans will have similar problems. So better keep it simple. And
time in a compiler may be better spent elsewhere (optimization, semantical analysis).

Classes of CFG grammars/languages

• maaaany have been proposed & studied, including their relationships
• lecture concentrates on

– top-down parsing, in particular
∗ LL(1)
∗ recursive descent

– bottom-up parsing
∗ LR(1)
∗ SLR
∗ LALR(1) (the class covered by yacc-style tools)

• grammars typically written in pure BNF
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Relationship of some grammar (not language) classes

unambiguous ambiguous

LR(k)
LR(1)

LALR(1)
SLR
LR(0)

LL(0)

LL(1)
LL(k)

taken from [4]

4.2 Top-down parsing

General task (once more)

• Given: a CFG (but appropriately restricted)
• Goal: “systematic method” s.t.

1. for every given word w: check syntactic correctness
2. [build AST/representation of the parse tree as side effect]
3. [do reasonable error handling]

Schematic view on “parser machine”

. . . if 1 + 2 ∗ ( 3 + 4 ) . . .

q0q1

q2

q3 ⋱
qn

Finite control

. . .

unbounded extra memory (stack)

q2

Reading “head”
(moves left-to-right)

Note: sequence of tokens (not characters)
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Derivation of an expression

Derivation

The slides contain some big series of overlays, showing the derivation. This derivation
process is not reproduced here (resp. only a few slides later as some big array of steps).

factors and terms

exp → term exp′
exp′ → addop term exp′ ∣ ε

addop → + ∣ −

term → factor term′

term′ → mulop factor term′ ∣ ε
mulop → ∗

factor → ( exp ) ∣ n

(4.1)

Remarks concerning the derivation

Note:

• input = stream of tokens
• there: 1 . . . stands for token class number (for readability/concreteness), in the

grammar: just number
• in full detail: pair of token class and token value ⟨number,1⟩

Notation:

• underline: the place (occurrence of non-terminal where production is used)
• crossed out:

– terminal = token is considered treated
– parser “moves on”
– later implemented as match or eat procedure
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Not as a “film” but at a glance: reduction sequence

exp ⇒
term exp′ ⇒
factor term′ exp′ ⇒
number term′ exp′ ⇒
numberterm′ exp′ ⇒
numberε exp′ ⇒
numberexp′ ⇒
numberaddop term exp′ ⇒
number+ term exp′ ⇒
number+term exp′ ⇒
number+factor term′ exp′ ⇒
number+number term′ exp′ ⇒
number+numberterm′ exp′ ⇒
number+numbermulop factor term′ exp′ ⇒
number+number∗ factor term′ exp′ ⇒
number+number∗ ( exp ) term′ exp′ ⇒
number+number∗ ( exp ) term′ exp′ ⇒
number+number∗ ( exp ) term′ exp′ ⇒
number+number∗ ( term exp′ ) term′ exp′ ⇒
number+number∗ ( factor term′ exp′ ) term′ exp′ ⇒
number+number∗ (number term′ exp′ ) term′ exp′ ⇒
number+number∗ (numberterm′ exp′ ) term′ exp′ ⇒
number+number∗ (numberε exp′ ) term′ exp′ ⇒
number+number∗ (numberexp′ ) term′ exp′ ⇒
number+number∗ (numberaddop term exp′ ) term′ exp′ ⇒
number+number∗ (number+ term exp′ ) term′ exp′ ⇒
number+number∗ (number+ term exp′ ) term′ exp′ ⇒
number+number∗ (number+ factor term′ exp′ ) term′ exp′ ⇒
number+number∗ (number+number term′ exp′ ) term′ exp′ ⇒
number+number∗ (number+numberterm′ exp′ ) term′ exp′ ⇒
number+number∗ (number+numberε exp′ ) term′ exp′ ⇒
number+number∗ (number+numberexp′ ) term′ exp′ ⇒
number+number∗ (number+numberε ) term′ exp′ ⇒
number+number∗ (number+number) term′ exp′ ⇒
number+number∗ (number+number ) term′ exp′ ⇒
number+number∗ (number+number ) ε exp′ ⇒
number+number∗ (number+number ) exp′ ⇒
number+number∗ (number+number ) ε ⇒
number+number∗ (number+number )

Besides this derivation sequence, the slide version contains also an “overlay” version, expanding the sequence step
by step. The derivation is a left-most derivation.
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Best viewed as a tree

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

( exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

The tree does no longer contain information, which parts have been expanded first. In
particular, the information that we have concretely done a left-most derivation when
building up the tree in a top-down fashion is not part of the tree (as it is not important).
The tree is an example of a parse tree as it contains information about the derivation
process using rules of the grammar.

Non-determinism?

• not a “free” expansion/reduction/generation of some word, but
– reduction of start symbol towards the target word of terminals

exp ⇒∗ 1 + 2 ∗ (3 + 4)

– i.e.: input stream of tokens “guides” the derivation process (at least it fixes the
target)

• but: how much “guidance” does the target word (in general) gives?

Oracular derivation

exp → exp + term ∣ exp − term ∣ term
term → term ∗ factor ∣ factor

factor → ( exp ) ∣ number



4 Parsing
4.2 Top-down parsing 91

exp ⇒1 ↓ 1 + 2 ∗ 3
exp + term ⇒3 ↓ 1 + 2 ∗ 3
term + term ⇒5 ↓ 1 + 2 ∗ 3
factor + term ⇒7 ↓ 1 + 2 ∗ 3
number+ term ↓ 1 + 2 ∗ 3
number+ term 1 ↓ +2 ∗ 3
number+ term ⇒4 1+ ↓ 2 ∗ 3
number+ term ∗ factor ⇒5 1+ ↓ 2 ∗ 3
number+ factor ∗ factor ⇒7 1+ ↓ 2 ∗ 3
number+number∗ factor 1+ ↓ 2 ∗ 3
number+number∗ factor 1 + 2 ↓ ∗3
number+number∗ factor ⇒7 1 + 2∗ ↓ 3
number+number∗number 1 + 2∗ ↓ 3
number+number∗number 1 + 2 ∗ 3 ↓

The derivation shows a left-most derivation. Again, the “redex” is underlined. In addition,
we show on the right-hand column the input and the progress which is being done on that
input. The subscripts on the derivation arrows indicate which rule is chosen in that
particular derivation step.

The point of the example is the following: Consider lines 7 and 8, and the steps the parser
does. In line 7, it is about to expand term which is the left-most terminal. Looking into
the “future” the unparsed part is 2 * 3. In that situation, the parser chooses production
4 (indicated by⇒4). In the next line, the left-most non-terminal is term again and also the
non-processed input has not changed. However, in that situation, the “oracular” parser
chooses ⇒5.

What does that mean? It means, that the look-ahead did not help the parser! It used all
look-ahead there is, namely until the very end of the word. And it still cannot make the
right decision with all the knowledge available at that given point. Note also: choosing
wrongly (like ⇒5 instead of ⇒4 or the other way around) would lead to a failed parse
(which would require backtracking). That means, it’s unparseable without backtracking
(and not amount of look-ahead will help), at least we need backtracking, if we do left-
derivations and top-down.

Right-derivations are not really an option, as typically we want to eat the input left-to-
right. Secondly, right-most derivations will suffer from the same problem (perhaps not for
the very grammar but in general, so nothing would even be gained.)

On the other hand: bottom-up parsing later works on different principles, so the particular
problem illustrate by this example will not bother that style of parsing (but there are other
challenges then).

So, what is the problem then here? The reason why the parser could not make a uniform
decision (for example comparing line 7 and 8) comes from the fact that these two particular
lines are connected by ⇒4, which corresponds to the production

term → term ∗ factor

there the derivation step replaces the left-most term by term again without moving ahead
with the input. This form of rule is said to be left-recursive (with recursion on term).
This is something that recursive descent parsers cannot deal with (or at least not without
doing backtracking, which is not an option).
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Note also: the grammar is not ambigious (without proof). If a grammar is ambiguous,
also then parsing won’t work properly (in this case neither will bottom-up parsing), but
ambiguity is not the problem right here.

We will learn how to transform grammars automatically to remove left-recursion. It’s
an easy construction. Note, however, that the construction not necessarily results in a
grammar that afterwards is top-down parsable. It simple removes a “feature” of the
grammar which definitely cannot be treated by top-down parsing.

As side remark, for being super-precise: If a grammar contains left-recursion on a non-
terminal which is “irrelevant” (i.e., no word will ever lead to a parse invovling that par-
ticular non-terminal), in that case, obviously, the left-recursion does not hurt. Of course,
the grammar in that case would be “silly”. We in general do not consider grammars which
contain such irrelevant symbols (or have other such obviously meaningless defects). But
unless we exclude such silly grammars, it’s not 100% true that grammars with left-recursion
cannot be treated via top-down parsing. But apart from that, it’s the case:

left-recursion destroys top-down parseability

(when based on left-most derivations/left-to-right parsing as it is always done for top-
down).

Two principle sources of non-determinism here

Using production A→ β

S ⇒∗ α1 A α2 ⇒ α1 β α2 ⇒∗ w

Conventions

• α1, α2, β: word of terminals and nonterminals
• w: word of terminals, only
• A: one non-terminal

2 choices to make

1. where, i.e., on which occurrence of a non-terminal in α1Aα2 to apply a pro-
duction1

2. which production to apply (for the chosen non-terminal).

1Note that α1 and α2 may contain non-terminals, including further occurrences of A.
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Left-most derivation

• that’s the easy part of non-determinism
• taking care of “where-to-reduce” non-determinism: left-most derivation
• notation ⇒l

• some of the example derivations earlier used that

Non-determinism vs. ambiguity

• Note: the “where-to-reduce”-non-determinism /= ambiguitiy of a grammar
• in a way (“theoretically”): where to reduce next is irrelevant:

– the order in the sequence of derivations does not matter
– what does matter: the derivation tree (aka the parse tree)

Lemma 4.2.1 (Left or right, who cares). S ⇒∗
l w iff S ⇒∗

r w iff S ⇒∗ w.
• however (“practically”): a (deterministic) parser implementation: must make a

choice

Using production A→ β

S ⇒∗ α1 A α2 ⇒ α1 β α2 ⇒∗ w

S ⇒∗
l w1 A α2 ⇒ w1 β α2 ⇒∗

l w

Remember the notational conventions used here: w stand for words containing terminals
only, whereas α represents arbitrary words.

What about the “which-right-hand side” non-determinism?

A→ β ∣ γ
Is that the correct choice?

S ⇒∗
l w1 A α2 ⇒ w1 β α2 ⇒∗

l w

• reduction with “guidance”: don’t loose sight of the target w
– “past” is fixed: w = w1w2
– “future” is not:

Aα2 ⇒l βα2 ⇒∗
l w2 or else Aα2 ⇒l γα2 ⇒∗

l w2 ?

Needed (minimal requirement):

In such a situation, “future target” w2 must determine which of the rules to take!
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Deterministic, yes, but still impractical

Aα2 ⇒l βα2 ⇒∗
l w2 or else Aα2 ⇒l γα2 ⇒∗

l w2 ?

• the “target” w2 is of unbounded length!⇒ impractical, therefore:

Look-ahead of length k

resolve the “which-right-hand-side” non-determinism inspecting only fixed-length prefix of
w2 (for all situations as above)

LL(k) grammars

CF-grammars which can be parsed doing that.2

4.3 First and follow sets

We had a general look of what a look-ahead is, and how it helps in top-down parsing. We
also saw that left-recursion is bad for top-down parsing (in particular, there can’t be any
look-ahead to help the parser). The definition discussed so far, being based on arbitrary
derivations, were impractical. What is needed is a criterion not for derivations, but on
grammars that can be used to check, whether the grammar is parseable in a top-down
manner with a look-ahead of, say k. Actually we will concentrate on a look-ahead of k = 1,
which is practically a decent thing to do.

The considerations leading to a useful criterion for top-down parsing with backtracking
will involve the definition of the so-called “first-sets”. In connection with that definition,
there will be also the (related) definition of follow-sets.

The definitions, as mentioned, will help to figure out if a grammar is top-down parseable.
Such a grammar will then be called an LL(1) grammar. One could straightforwardly
generalize the definition to LL(k) (which would include generalizations of the first and
follow sets), but that’s not part of the pensum. Note also: the first and follow set definition
will also be used when discussing bottom-up parsing later.

Besides that, in this section we will also discuss what to do if the grammar is not LL(1).
That will lead to a transformation removing left-recursion. That is not the only defect
that one wants to transform away. A second problem that is a show-stopper for LL(1)-
parsing is known as “common left factors”. If a grammar suffers from that, there is another
transformation called left factorization which can remedy that.

2Of course, one can always write a parser that “just makes some decision” based on looking ahead k
symbols. The question is: will that allow to capture all words from the grammar and only those.
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First and Follow sets

• general concept for grammars
• certain types of analyses (e.g. parsing):

– info needed about possible “forms” of derivable words,

First-set of A

which terminal symbols can appear at the start of strings derived from a given nonterminal
A

Follow-set of A

Which terminals can follow A in some sentential form.

Remarks

• sentential form: word derived from grammar’s starting symbol
• later: different algos for first and follow sets, for all non-terminals of a given grammar
• mostly straightforward
• one complication: nullable symbols (non-terminals)
• Note: those sets depend on grammar, not the language

First sets

Definition 4.3.1 (First set). Given a grammar G and a non-terminal A. The first-set of
A, written FirstG(A) is defined as

FirstG(A) = {a ∣ A⇒∗
G aα, a ∈ ΣT } + {ε ∣ A⇒∗

G ε} . (4.2)

Definition 4.3.2 (Nullable). Given a grammar G. A non-terminal A ∈ ΣN is nullable, if
A⇒∗ ε.

Nullable

The definition here of being nullable refers to a non-terminal symbol. When concentrating
on context-free grammars, as we do for parsing, that’s basically the only interesting case.
In principle, one can define the notion of being nullable analogously for arbitrary words
from the whole alphabet Σ = ΣT + ΣN . The form of productions in CFGs makes it
obvious, that the only words which actually may be nullable are words containing only
non-terminals. Once a terminal is derived, it can never be “erased”. It’s equally easy to
see, that a word α ∈ Σ∗

N is nullable iff all its non-terminal symbols are nullable. The same
remarks apply to context-sensitive (but not general) grammars.
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For level-0 grammars in the Chomsky-hierarchy, also words containing terminal symbols
may be nullable, and nullability of a word, like most other properties in that stetting,
becomes undecidable.

First and follow sets

One point worth noting is that the first and the follow sets, while seemingly quite similar,
differ in one important aspect (the follow set definition will come later). The first set
is about words derivable from a given non-terminal A. The follow set is about words
derivable from the starting symbol! As a consequence, non-terminals A which are not
reachable from the grammar’s starting symbol have, by definition, an empty follow set. In
contrast, non-terminals unreachable from a/the start symbol may well have a non-empty
first-set. In practice a grammar containing unreachable non-terminals is ill-designed, so
that distinguishing feature in the definition of the first and the follow set for a non-terminal
may not matter so much. Nonetheless, when implementing the algo’s for those sets, those
subtle points do matter! In general, to avoid all those fine points, one works with grammars
satisfying a number of common-sense restructions. One are so called reduced grammars,
where, informally, all symbols “play a role” (all are reachable, all can derive into a word
of terminals).

Examples

• Cf. the Tiny grammar
• in Tiny, as in most languages

First(if -stmt) = {”if”}
• in many languages:

First(assign-stmt) = {identifier, ”(”}
• typical Follow (see later) for statements:

Follow(stmt) = {”; ”, ”end”, ”else”, ”until”}
Remarks

• note: special treatment of the empty word ε
• in the following: if grammar G clear from the context

– ⇒∗ for ⇒∗
G

– First for FirstG
– . . .

• definition so far: “top-level” for start-symbol, only
• next: a more general definition

– definition of First set of arbitrary symbols (and even words)
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– and also: definition of First for a symbol in terms of First for “other symbols”
(connected by productions)⇒ recursive definition

A more algorithmic/recursive definition

• grammar symbol X: terminal or non-terminal or ε

Definition 4.3.3 (First set of a symbol). Given a grammar G and grammar symbol X.
The first-set of X, written First(X), is defined as follows:

1. If X ∈ ΣT + {ε}, then First(X) contains X.
2. If X ∈ ΣN : For each production

X →X1X2 . . .Xn

a) First(X) contains First(X1) ∖ {ε}
b) If, for some i < n, all First(X1), . . . ,First(Xi) contain ε, then First(X) contains

First(Xi+1) ∖ {ε}.
c) If all First(X1), . . . ,First(Xn) contain ε, then First(X) contains {ε}.

Recursive definition of First?

The following discussion may be ignored, if wished. Even if details and theory behind it
is beyond the scope of this lecture, it is worth considering above definition more closely.
One may even consider if it is a definition at all (resp. in which way it is a definition).

One naive first impression may be: it’s a kind of a “functional definition”, i.e., the above
Definition 4.3.3 gives a recursive definition of the function First. As discussed later,
everything gets rather simpler if we would not have to deal with nullable words and ε-
productions. For the point being explained here, let’s assume that there are no such
productions and get rid of the special cases, cluttering up Definition 4.3.3. Removing the
clutter gives the following simplified definition:

Definition 4.3.4 (First set of a symbol (no ε-productions)). Given a grammar G and
grammar symbol X. The First-set of X /= ε, written First(X) is defined as follows:

1. If X ∈ ΣT , then First(X) ⊇ {X}.
2. If X ∈ ΣN : For each production

X →X1X2 . . .Xn ,

First(X) ⊇ First(X1).
Compared to the previous condition, I did the following minor adaptation (apart from
cleaning up the ε’s): I replaced the English word “contains” with the superset relation
symbol ⊇.
Now, with Definition 4.3.4 as a simplified version of the original definition being made
slightly more explicit: in which way is that a definition at all?
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For being a definition for First(X), it seems awfully lax. Already in (1), it “defines”
that First(X) should “at least contain X”. A similar remark applies to case (2) for
non-terminals. Those two requirements are as such well-defined, but they don’t define
First(X) in a unique manner! Definition 4.3.4 defines what the set First(X) should at
least contain!

So, in a nutshell, one should not consider Definition 4.3.4 a “recursive definition of
First(X)” but rather

“a definition of recursive conditions on First(X), which, when satisfied, ensures
that First(X) contains at least all non-terminals we are after”.

What we are really after is the smallest First(X) which satisfies those conditions of the
definitions.

Now one may think: the problem is that definition is just “sloppy”. Why does it use the
word “contain” resp./ the ⊇-relation, instead of requiring equality, i.e., =? While plausible
at first sight, unfortunately, whether we use ⊇ or set equality = in Definition 4.3.4 does
not change anything.

Anyhow, the core of the matter is not = vs. ⊇. The core of the matter is that “Definition”
4.3.4 is circular!

Considering that definition of First(X) as a plain functional and recursive definition of
a procedure missed the fact that grammar can, of course, contain “loops”. Actually, it’s
almost a characterizing feature of reasonable context-free grammars (or even regular gram-
mars) that they contain “loops” – that’s the way they can describe infinite languages.

In that case, obviously, considering Definition 4.3.3 with = instead of ⊇ as the recursive
definition of a function leads immediately to an “infinite regress”, the recurive function
won’t terminate. So again, that’s not helpful.

Technically, such a definition can be called a recursive constraint (or a constraint system,
if one considers the whole definition to consist of more than one constraint, namely for
different terminals and for different productions).

For words

Definition 4.3.5 (First set of a word). Given a grammar G and word α. The first-set of

α =X1 . . .Xn ,

written First(α) is defined inductively as follows:

1. First(α) contains First(X1) ∖ {ε}
2. for each i = 2, . . . n, if First(Xk) contains ε for all k = 1, . . . , i − 1, then First(α)

contains First(Xi) ∖ {ε}
3. If all First(X1), . . . ,First(Xn) contain ε, then First(X) contains {ε}.
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Concerning the definition of First

The definition here is of course very close to the definition of inductive case of the previous
definition, i.e., the first set of a non-terminal. Whereas the previous definition was a
recursive, this one is not.

Note that the word α may be empty, i.e., n = 0, In that case, the definition gives First(ε) ={ε} (due to the 3rd condition in the above definition). In the definitions, the empty word ε
plays a specific, mostly technical role. The original, non-algorithmic version of Definition
4.3.1, makes it already clear, that the first set not precisely corresponds to the set of
terminal symbols that can appear at the beginning of a derivable word. The correct
intuition is that it corresponds to that set of terminal symbols together with ε as a special
case, namely when the initial symbol is nullable.

That may raise two questions. 1) Why does the definition makes that as special case,
as opposed to just using the more “straightforward” definition without taking care of the
nullable situation? 2) What role does ε play here?

The second question has no “real” answer, it’s a choice which is being made which could
be made differently. What the definition from equation (4.3.1) in fact says is: “give the set
of terminal symbols in the derivable word and indicate whether or not the start symbol
is nullable.” The information might as well be interpreted as a pair consisting of a set
of terminals and a boolean (indicating nullability). The fact that the definition of First
as presented here uses ε to indicate that additional information is a particular choice of
representation (probably due to historical reasons: “they always did it like that . . . ”). For
instance, the influential “Dragon book” [1, Section 4.4.2] uses the ε-based definition. The
texbooks [3] (and its variants) don’t use ε as indication for nullability.

In order that this definition works, it is important, obviously, that ε is not a terminal
symbol, i.e., ε ∉ ΣT (which is generally assumed).

Having clarified 2), namely that using ε is a matter of conventional choice, remains question
1), why bother to include nullability-information in the definition of the first-set at all,
why bother with the “extra information” of nullability? For that, there is a real technical
reason: For the recursive definitions to work, we need the information whether or not a
symbol or word is nullable, therefore it’s given back as information.

As a further point concerning the first sets: The slides give 2 definitions, Definition 4.3.1
and Definition 4.3.3. Of course they are intended to mean the same. The second version
is a more recursive or algorithmic version, i.e., closer to a recursive algorithm. If one
takes the first one as the “real” definition of that set, in principle we would be obliged
to prove that both versions actually describe the same same (resp. that the recurive
definition implements the original definition). The same remark applies also to the non-
recursive/iterative code that is shown next.

Pseudo code
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for all X ∈ A ∪ {ε} do
F i r s t [X] := X

end ;

for all non-terminals A do
F i r s t [A] := {}

end
while there are changes to any F i r s t [A] do

for each production A→X1 . . .Xn do
k := 1 ;
cont inue := true
while cont inue = true and k ≤ n do

F i r s t [A] := F i r s t [A] ∪ F i r s t [Xk ] ∖ {ε}
i f ε ∉ F i r s t [Xk ] then cont inue := fa l se
k := k + 1

end ;
i f cont inue = true
then F i r s t [A] := F i r s t [A] ∪ {ε}

end ;
end

If only we could do away with special cases for the empty words . . .

for a grammar without ε-productions.3

for all non-terminals A do
F i r s t [A] := {} // counts as change

end
while there are changes to any F i r s t [A] do

for each production A→X1 . . .Xn do
F i r s t [A] := F i r s t [A] ∪ F i r s t [X1 ]

end ;
end

This simplification is added for illustration, only. What makes the algorithm slightly
more than just immediate is the fact that symbols can be nullable (non-terminals can be
nullable). If we don’t have ε-transitions, then no symbol is nullable. Under this simplifying
assumption, the algorithm looks quite simpler. We don’t need to check for nullability (i.e.,
we don’t need to check if ε is part of the first sets), and moreover, we can do without
the inner while loop, walking down the right-hand side of the production as long as the
symbols turn out to be nullable (since we know they are not).

Example expression grammar (from before)

exp → exp addop term ∣ term
addop → + ∣ −

term → term mulop factor ∣ factor
mulop → ∗

factor → ( exp ) ∣ number

(4.3)

3A production of the form A→ ε.
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Example expression grammar (expanded)

exp → exp addop term
exp → term

addop → +

addop → −

term → term mulop factor
term → factor

mulop → ∗

factor → ( exp )

factor → n

(4.4)

“Run” of the algo

nr pass 1 pass 2 pass 3

1 exp → exp addop term

2 exp → term

3 addop → +

4 addop → −

5 term → term mulop factor

6 term → factor

7 mulop → ∗

8 factor → ( exp )

9 factor → n

How the algo works

The first thing to observe: the grammar does not contain ε-productions. That, very
fortunately, simplifies matters considerably! It should also be noted that the table from
above is a schematic illustration of a particular execution strategy of the pseudo-code.
The pseudo-code itself leaves out details of the evaluation, notably the order in which
non-deterministic choices are done by the code. The main body of the pseudo-code is
given by two nested loops. Even if details (of data structures) are not given, one possible
way of interpreting the code is as follows: the outer while-loop figures out which of the
entries in the First-array have “recently” been changed, remembers that in a “collection”
of non-terminals A’s, and that collection is then worked off (i.e. iterated over) on the inner
loop. Doing it like that leads to the “passes” shown in the table. In other words, the two
dimensions of the table represent the fact that there are 2 nested loops.
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Having said that: it’s not the only way to “traverse the productions of the grammar”.
One could arrange a version with only one loop and a collection data structure, which
contains all productions A→X1 . . .Xn such that First[A] has “recently been changed”.
That data structure therefore contains all the productions that “still need to be treated”.
Such a collection data structure containing “all the work still to be done” is known as
work-list, even if it needs not technically be a list. It can be a queue, i.e., following a FIFO
strategy, it can be a stack (realizing LIFO), or some other strategy or heuristic. Possible is
also a randomized, i.e., non-deterministic strategy (which is sometimes known as chaotic
iteration).

“Run” of the algo

Collapsing the rows & final result

• results per pass:
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1 2 3
exp {(,n}
addop {+,−}
term {(,n}
mulop {∗}
factor {(,n}

• final results (at the end of pass 3):

First[_]
exp {(,n}
addop {+,−}
term {(,n}
mulop {∗}
factor {(,n}

Work-list formulation

for all non-terminals A do
F i r s t [A] := {}
WL := P // a l l product ions

end
while WL /= ∅ do

remove one (A→X1 . . .Xn) from WL
i f F i r s t [A] /= F i r s t [A] ∪ F i r s t [X1]

then F i r s t [A] := F i r s t [A] ∪ F i r s t [X1]

add a l l product ions (A→X ′
1 . . .X

′
m) to WL

else skip
end

• no ε-productions
• worklist here: “collection” of productions
• alternatively, with slight reformulation: “collection” of non-terminals instead also

possible

Follow sets

Definition 4.3.6 (Follow set). Given a grammar G with start symbol S, and a non-
terminal A.

The follow-set of A, written FollowG(A), is
FollowG(A) = {a ∣ S $⇒∗

G α1Aaα2, a ∈ ΣT + {$}} . (4.5)

• $ as special end-marker

• typically: start symbol not on the right-hand side of a production
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Special symbol $

The symbol $ can be interpreted as “end-of-file” (EOF) token. It’s standard to assume
that the start symbol S does not occur on the right-hand side of any production. In that
case, the follow set of S contains $ as only element. Note that the follow set of other
non-terminals may well contain $.

As said, it’s common to assume that S does not appear on the right-hand side of any
production. For a start, S won’t occur “naturally” there anyhow in practical programming
language grammars. Furthermore, with S occuring only on the left-hand side, the grammar
has a slightly nicer shape insofar as it makes its algorithmic treatment slightly nicer.
It’s basically the same reason why one sometimes assumes that, for instance, control-
flow graphs have one “isolated” entry node (and/or an isolated exit node), where being
isolated means, that no edge in the graph goes (back) into into the entry node; for exits
nodes, the condition means, no edge goes out. In other words, while the graph can of
course contain loops or cycles, the entry node is not part of any such loop. That is done
likewise to (slightly) simplify the treatment of such graphs. Slightly more generally and
also connected to control-flow graphs: similar conditions about the shape of loops (not just
for the entry and exit nodes) have been worked out, which play a role in loop optimization
and intermediate representations of a compiler, such as static single assignment forms.

Coming back to the condition here concerning $: even if a grammar would not immediatly
adhere to that condition, it’s trivial to transform it into that form by adding another
symbol and make that the new start symbol, replacing the old. We will do that sometimes
in exercises and examples later

Follow sets, recursively

Definition 4.3.7 (Follow set of a non-terminal). Given a grammar G and nonterminal
A. The Follow-set of A, written Follow(A) is defined as follows:

1. If A is the start symbol, then Follow(A) contains $.
2. If there is a production B → αAβ, then Follow(A) contains First(β) ∖ {ε}.
3. If there is a production B → αAβ such that ε ∈ First(β), then Follow(A) contains

Follow(B).
• $: “end marker” special symbol, only to be contained in the follow set

More imperative representation in pseudo code

Follow [S ] := {$}
for all non-terminals A /= S do
Follow [A ] := {}

end
while there are changes to any Follow− s e t do

for each production A→X1 . . .Xn do
for each Xi which i s a non− t e rmina l do
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Follow [Xi ] := Follow [Xi ]∪( F i r s t (Xi+1 . . .Xn) ∖ {ε})
i f ε ∈ F i r s t (Xi+1Xi+2 . . .Xn )
then Follow [Xi ] := Follow [Xi ] ∪ Follow [A ]

end
end

end

Note! First() = {ε}

Expression grammar once more

“Run” of the algo

nr pass 1 pass 2

1 exp → exp addop term

2 exp → term

5 term → term mulop factor

6 term → factor

8 factor → ( exp )

normalsize
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Recursion vs. iteration

“Run” of the algo

Illustration of first/follow sets

• red arrows: illustration of information flow in the algos
• run of Follow:

– relies on First
– in particular a ∈ First(E) (right tree)

• $ ∈ Follow(B)
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The two trees are just meant a illustrations (but still correct). The grammar itself is not given,
but the tree shows relevant productions.

In case of the tree on the left (for the first sets): A is the root and must therefore be the start
symbol. Since the root A has three children C, D, and E, there must be a production A→ C D E.
etc.

The first-set definition would “immediately” detect that F has a in its first-set, i.e., all words
derivable starting from F start with an a (and actually with no other terminal, as F is mentioned
only once in that sketch of a tree). At any rate, only after determining that a is in the first-set of
F , then it can enter the first-set of C, etc. and in this way percolating upwards the tree.

Note that the tree is insofar specific, in that all the internal nodes are different non-terminals. In
more realistic settings, different nodes would represent the same non-terminal. And also in this
case, one can think of the information percolating up.

More complex situation (nullability)

In the tree on the left, B,M,N,C, and F are nullable. That is marked in that the resulting first
sets contain ε. There will also be exercises about that.

Some forms of grammars are less desirable than others

• left-recursive production:

A→ Aα

more precisely: example of immediate left-recursion

• 2 productions with common “left factor”:

A→ αβ1 ∣ αβ2 where α /= ε
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Left-recursive and unfactored grammars

At the current point in the presentation, the importance of those conditions might not
yet be clear (but remember the discussion around “oracular” derivations). In general, it’s
that certain kind of parsing techniques require absence of left-recursion and of common
left-factors. Note also that a left-linear production is a special case of a production with
immediate left recursion. In particular, recursive descent parsers would not work with
left-recursion. For that kind of parsers, left-recursion needs to be avoided.

Why common left-factors are undesirable should at least intuitively be clear: we see this
also on the next slide (the two forms of conditionals). It’s intuitively clear, that a parser,
when encountering an if (and the following boolean condition and perhaps the then
clause) cannot decide immediately which rule applies. It should also be intiutively clear
that that’s what a parser does: inputting a stream of tokens and trying to figure out which
sequence of rules are responsible for that stream (or else reject the input). The amount
of additional information, at each point of the parsing process, to determine which rule
is responsible next is called the look-ahead. Of course, if the grammar is ambiguous, no
unique decision may be possible (no matter the look-ahead). Ambiguous grammars are
unwelcome as specification for parsers.

On a very high-level, the situation can be compared with the situation for regular lan-
guages/automata. Non-deterministic automata may be ok for specifying a language (they
can more easily be connected to regular expressions), but they are not so useful for specify-
ing a scanner program. There, deterministic automata are necessary. Here, grammars with
left-recursion, grammars with common factors, or even ambiguous grammars may be ok for
specifying a context-free language. For instance, ambiguity may be caused by unspecified
precedences or non-associativity. Nonetheless, how to obtain a grammar representation
more suitable to be more or less directly translated to a parser is an issue less clear cut
compared to regular languages. Already the question whether or not a given grammar is
ambiguous or not is undecidable. If ambiguous, there’d be no point in turning it into a
practical parser. Also the question, what’s an acceptable form of grammar depends on
what class of parsers one is after (like a top-down parser or a bottom-up parser).

Some simple examples for both

• left-recursion

exp → exp + term

• classical example for common left factor: rules for conditionals

if -stmt → if ( exp ) stmt end∣ if ( exp ) stmt else stmt end
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Transforming the expression grammar

exp → exp addop term ∣ term
addop → + ∣ −

term → term mulop factor ∣ factor
mulop → ∗

factor → ( exp ) ∣ number

• obviously left-recursive
• remember: this variant used for proper associativity!

After removing left recursion

exp → term exp′
exp′ → addop term exp′ ∣ ε

addop → + ∣ −

term → factor term′
term′ → mulop factor term′ ∣ ε

mulop → ∗

factor → ( exp ) ∣ n

• still unambiguous
• unfortunate: associativity now different!
• note also: ε-productions & nullability

Left-recursion removal

Left-recursion removal

A transformation process to turn a CFG into one without left recursion

Explanation

• price: ε-productions
• 3 cases to consider

– immediate (or direct) recursion
∗ simple
∗ general

– indirect (or mutual) recursion

Left-recursion removal: simplest case

Before

A → Aα ∣ β
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After

A → βA′
A′ → αA′ ∣ ε

Schematic representation

A → Aα ∣ β
A

A

A

A

β

α

α

α

A → βA′
A′ → αA′ ∣ ε
A

β A′
α A′

α A′
α A′

ε

Remarks

• both grammars generate the same (context-free) language (= set of words over ter-
minals)

• in EBNF:

A→ β{α}
• two negative aspects of the transformation

1. generated language unchanged, but: change in resulting structure (parse-tree),
i.a.w. change in associativity, which may result in change of meaning

2. introduction of ε-productions
• more concrete example for such a production: grammar for expressions

Left-recursion removal: immediate recursion (multiple)

Before

A → Aα1 ∣ . . . ∣ Aαn∣ β1 ∣ . . . ∣ βm
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space

After

A → β1A
′ ∣ . . . ∣ βmA′

A′ → α1A
′ ∣ . . . ∣ αnA′

∣ ε

EBNF

Note: can be written in EBNF as:

A→ (β1 ∣ . . . ∣ βm)(α1 ∣ . . . ∣ αn)∗

Removal of: general left recursion

Assume non-terminals A1, . . . ,Am

for i := 1 to m do
for j := 1 to i −1 do

replace each grammar rule of the form Ai → Ajβ by // i < j
rule Ai → α1β ∣ α2β ∣ . . . ∣ αkβ

where Aj → α1 ∣ α2 ∣ . . . ∣ αk

is the current rule(s) for Aj // cur rent
end
{ corresponds to i = j }
remove, if necessary, immediate left recursion for Ai

end

“current” = rule in the current stage of algo

Example (for the general case)

let A = A1, B = A2

A → Ba ∣ Aa ∣ c
B → Bb ∣ Ab ∣ d

A → BaA′ ∣ cA′
A′ → aA′ ∣ ε
B → Bb ∣ Ab ∣ d

A → BaA′ ∣ cA′
A′ → aA′ ∣ ε
B → Bb ∣ BaA′b ∣ cA′b ∣ d
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A → BaA′ ∣ cA′
A′ → aA′ ∣ ε
B → cA′bB′ ∣ dB′

B′ → bB′ ∣ aA′bB′ ∣ ε

Left factor removal

• CFG: not just describe a context-free languages
• also: intended (indirect) description of a parser for that language⇒ common left factor undesirable
• cf.: determinization of automata for the lexer

Simple situation

1. before
A→ αβ ∣ αγ ∣ . . .

2. after
A → αA′ ∣ . . .
A′ → β ∣ γ

Example: sequence of statements

sequences of statements

1. Before
stmt-seq → stmt ; stmt-seq∣ stmt

2. After
stmt-seq → stmt stmt-seq′

stmt-seq′ → ; stmt-seq ∣ ε
Example: conditionals

1. Before
if -stmt → if ( exp ) stmt-seq end∣ if ( exp ) stmt-seq else stmt-seq end

2. After
if -stmt → if ( exp ) stmt-seq else-or-end

else-or-end → else stmt-seq end ∣ end
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Example: conditionals (without else)

1. Before
if -stmt → if ( exp ) stmt-seq∣ if ( exp ) stmt-seq else stmt-seq

2. After
if -stmt → if ( exp ) stmt-seq else-or-empty

else-or-empty → else stmt-seq ∣ ε
Not all factorization doable in “one step”

1. Starting point
A → abcB ∣ abC ∣ aE

2. After 1 step
A → abA′ ∣ aE
A′ → cB ∣ C

3. After 2 steps
A → aA′′
A′′ → bA′ ∣ E
A′ → cB ∣ C

4. longest left factor
• note: we choose the longest common prefix (= longest left factor) in the first

step

Left factorization

while there are changes to the grammar do
for each nonterminal A do

let α be a prefix of max. length that is shared
by two or more productions for A

i f α /= ε
then

let A→ α1 ∣ . . . ∣ αn be all
prod. for A and suppose that α1, . . . , αk share α
so that A→ αβ1 ∣ . . . ∣ αβk ∣ αk+1 ∣ . . . ∣ αn ,
that the βj’s share no common prefix, and
that the αk+1, . . . , αn do not share α.

replace rule A→ α1 ∣ . . . ∣ αn by the rules
A→ αA′ ∣ αk+1 ∣ . . . ∣ αn

A′ → β1 ∣ . . . ∣ βk

end
end

end
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The algorithm is pretty straightforward. This time (unlike many others) it’s not a loop
“until stabilization”, it’s a more straighforward “iteration” (with nested loops). The only
thing to keep in might is that what is called α in the pseudo-code needs to be the longest
comment prefix and the β’s must include all right-hand sides that start with that (common
longest prefix) α.

4.4 LL-parsing (mostly LL(1))

After having covered the more technical definitions of the first and follow sets and trans-
formations to remove left-recursion resp. common left factors, we go back to top-down
parsing, in particular to the specific form of LL(1) parsing.

Additionally, we discuss issues about abstract syntax trees vs. parse trees.

Parsing LL(1) grammars

• this lecture: we don’t do LL(k) with k > 1
• LL(1): particularly easy to understand and to implement (efficiently)
• not as expressive than LR(1) (see later), but still kind of decent

LL(1) parsing principle

Parse from 1) left-to-right (as always anyway), do a 2) left-most derivation and resolve
the “which-right-hand-side” non-determinism by

1. looking 1 symbol ahead.

• two flavors for LL(1) parsing here (both are top-down parsers)
– recursive descent
– table-based LL(1) parser

• predictive parsers

If one wants to be very precise: it’s recursive descent with one look-ahead and without
backtracking. It’s the single most common case for recursive descent parsers. Longer
look-aheads are possible, but less common. Technically, even allowing back-tracking can
be done using recursive descent as principle (even if not done in practice).
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Sample expr grammar again

factors and terms

exp → term exp′
exp′ → addop term exp′ ∣ ε

addop → + ∣ −

term → factor term′
term′ → mulop factor term′ ∣ ε

mulop → ∗

factor → ( exp ) ∣ n

(4.6)

Look-ahead of 1: straightforward, but not trivial

• look-ahead of 1:
– not much of a look-ahead, anyhow
– just the “current token”⇒ read the next token, and, based on that, decide

• but: what if there’s no more symbols?⇒ read the next token if there is, and decide based on the token or else the fact that
there’s none left4

Example: 2 productions for non-terminal factor

factor → ( exp ) ∣ number

That situation here is more or less trivial, but that’s not all to LL(1) . . .

Recursive descent: general set-up

1. global variable, say tok, representing the “current token” (or pointer to current
token)

2. parser has a way to advance that to the next token (if there’s one)

Idea

For each non-terminal nonterm, write one procedure which:

• succeeds, if starting at the current token position, the “rest” of the token stream
starts with a syntactically correct word of terminals representing nonterm

• fail otherwise

• ignored (for now): when doing the above successfully, build the AST for the accepted
nonterminal.

4Sometimes “special terminal” $ used to mark the end (as mentioned).
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Recursive descent (in C-like)

method factor for nonterminal factor
f ina l int LPAREN=1,RPAREN=2,NUMBER=3,
PLUS=4,MINUS=5,TIMES=6;

void factor ( ) {
switch ( tok ) {
case LPAREN: eat (LPAREN) ; expr ( ) ; eat (RPAREN) ;
case NUMBER: eat (NUMBER) ;
}

}

Recursive descent (in ocaml)

type token = LPAREN | RPAREN | NUMBER
| PLUS | MINUS | TIMES

let f a c t o r ( ) = (∗ f unc t i on f o r f a c t o r s ∗)
match ! tok with

LPAREN −> eat (LPAREN) ; expr ( ) ; eat (RPAREN)
| NUMBER −> eat (NUMBER)

Slightly more complex

• previous 2 rules for factor : situation not always as immediate as that

LL(1) principle (again)

given a non-terminal, the next token must determine the choice of right-hand side5

⇒ definition of the First set
Lemma 4.4.1 (LL(1) (without nullable symbols)). A reduced context-free grammar
without nullable non-terminals is an LL(1)-grammar iff for all non-terminals A and
for all pairs of productions A→ α1 and A→ α2 with α1 /= α2:

First1(α1) ∩ First1(α2) = ∅ .

5It must be the next token/terminal in the sense of First, but it need not be a token directly mentioned
on the right-hand sides of the corresponding rules.
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Common problematic situation

• often: common left factors problematic

if -stmt → if ( exp ) stmt∣ if ( exp ) stmt else stmt

• requires a look-ahead of (at least) 2
• ⇒ try to rearrange the grammar

1. Extended BNF ([9] suggests that)
if -stmt → if ( exp ) stmt[else stmt]

1. left-factoring:

if -stmt → if ( exp ) stmt else−part
else−part → ε ∣ else stmt

Recursive descent for left-factored if -stmt

procedure ifstmt ( )
begin

match ( " i f " ) ;
match ( " ( " ) ;
exp ( ) ;
match ( " ) " ) ;
stmt ( ) ;
i f token = " else "
then match ( " else " ) ;

stmt ( )
end

end ;

Left recursion is a no-go

factors and terms

exp → exp addop term ∣ term
addop → + ∣ −

term → term mulop factor ∣ factor
mulop → ∗

factor → ( exp ) ∣ number

(4.7)

• consider treatment of exp: First(exp)?
• whatever is in First(term), is in First(exp)6 recursion.

6And it would not help to look-ahead more than 1 token either.
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Left-recursion

Left-recursive grammar never works for recursive descent.

Removing left recursion may help

exp → term exp′
exp′ → addop term exp′ ∣ ε

addop → + ∣ −

term → factor term′
term′ → mulop factor term′ ∣ ε

mulop → ∗

factor → ( exp ) ∣ n

procedure exp ( )
begin

term ( ) ;
exp′ ( )

end

procedure exp′ ( )
begin

case token of
"+" : match ( "+" ) ;

term ( ) ;
exp′ ( )

" − " : match ( " − " ) ;
term ( ) ;
exp′ ( )

end
end
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Recursive descent works, alright, but . . .

exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

mulop

∗

factor

( exp

term

factor

Nr

term′

ε

exp′

addop

+

term

factor

Nr

term′

ε

exp′

ε

)

term′

ε

exp′

ε

. . . who wants this form of trees?

Left-recursive grammar with nicer parse trees

1 + 2 ∗ (3 + 4)
exp

exp

term

factor

Nr

addop

+

term

term

factor

Nr

mulop

∗

term

factor

( exp

Nr mulop

∗

Nr

)

The simple “original” expression grammar (even nicer)

Flat expression grammar

exp → exp op exp ∣ ( exp ) ∣ number
op → + ∣ − ∣ ∗

1 + 2 ∗ (3 + 4)
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exp

exp

Nr

op

+

exp

exp

Nr

op

∗

exp

( exp

exp

Nr

op

+

exp

Nr

)

Associtivity problematic

Precedence & assoc.

exp → exp addop term ∣ term
addop → + ∣ −
term → term mulop factor ∣ factor

mulop → ∗
factor → ( exp ) ∣ number

Formula

3 + 4 + 5

parsed “as”

(3 + 4) + 5

3 − 4 − 5

parsed “as”

(3 − 4) − 5
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Tree

exp

exp

exp

term

factor

number

addop

+

term

factor

number

addop

+

term

factor

number

exp

exp

exp

term

factor

number

addop

−

term

factor

number

addop

−

term

factor

number

Now use the grammar without left-rec (but right-rec instead)

No left-rec.

exp → term exp′
exp′ → addop term exp′ ∣ ε

addop → + ∣ −
term → factor term′

term′ → mulop factor term′ ∣ ε
mulop → ∗
factor → ( exp ) ∣ n

Formula

3 − 4 − 5

parsed “as”

3 − (4 − 5)
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Tree

exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

But if we need a “left-associative” AST?

• we want (3 − 4) − 5, not 3 − (4 − 5)
exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

3

4 -1

5

-6

Code to “evaluate” ill-associated such trees correctly

function exp′ ( v a l s o f a r : int ) : int ;
begin

i f token = '+ ' or token = ' − '
then

case token of
'+ ' : match ( '+ ' ) ;

v a l s o f a r := va l s o f a r + term ;
' − ' : match ( ' − ' ) ;

v a l s o f a r := va l s o f a r − term ;
end case ;
return exp′ ( v a l s o f a r ) ;

else return v a l s o f a r
end ;
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• extra “accumulator” argument valsofar
• instead of evaluating the expression, one could build the AST with the appropriate

associativity instead:
• instead of valueSoFar, one had rootOfTreeSoFar

The example parses expressions and evalutes them while doing that. In most cases in a
full-fledged parser, one does not need a value as output of a successful parse-run, but an
AST. But the issue of the fact, that sometimes the associativity is “the wrong way”. Also
the “accumulator”-pattern illustrated here in the evaluation setting could help out with
AST

“Designing” the syntax, its parsing, & its AST :Bframe:x

trade offs:

1. starting from: design of the language, how much of the syntax is left “implicit”7
2. which language class? Is LL(1) good enough, or something stronger wanted?
3. how to parse? (top-down, bottom-up, etc.)
4. parse-tree/concrete syntax trees vs. ASTs

AST vs. CST

• once steps 1.–3. are fixed: parse-trees fixed!
• parse-trees = essence of grammatical derivation process
• often: parse trees only “conceptually” present in a parser
• AST:

– abstractions of the parse trees
– essence of the parse tree
– actual tree data structure, as output of the parser
– typically on-the fly: AST built while the parser parses, i.e. while it executes a

derivation in the grammar

AST vs. CST/parse tree

Parser "builds" the AST data structure while "doing" the parse tree

AST: How “far away” from the CST?

• AST: only thing relevant for later phases ⇒ better be clean . . .
• AST “=” CST?

– building AST becomes straightforward
– possible choice, if the grammar is not designed “weirdly”,

7Lisp is famous/notorious in that its surface syntax is more or less an explicit notation for the ASTs. Not
that it was originally planned like this . . .
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exp

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

addop

−

term

factor

number

term′

ε

exp′

ε

3

4 -1

5

-6

parse-trees like that better be cleaned up as AST

exp

exp

exp

term

factor

number

addop

−

term

factor

number

addop

−

term

factor

number

slightly more reasonably looking as AST (but underlying grammar not directly useful for
recursive descent)

exp

exp

number

op

−

exp

exp

number

op

−

exp

number

That parse tree looks reasonable clear and intuitive

−

number −

number number
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exp ∶ −

exp ∶ number exp ∶ −

exp ∶ number exp ∶ number

Certainly minimal amount of nodes, which is nice as such. However, what is missing
(which might be interesting) is the fact that the 2 nodes labelled “−” are expressions!

This is how it’s done (a recipe)

Assume, one has a “non-weird” grammar

exp → exp op exp ∣ ( exp ) ∣ number
op → + ∣ − ∣ ∗

• typically that means: assoc. and precedences etc. are fixed outside the non-weird
grammar
– by massaging it to an equivalent one (no left recursion etc.)
– or (better): use parser-generator that allows to specify assoc . . . like “ "∗" binds

stronger than "+", it associates to the left . . . ” , without cluttering the grammar.
• if grammar for parsing is not as clear: do a second one describing the ASTs

Remember (independent from parsing)

BNF describe trees

This is how it’s done (recipe for OO data structures)

Recipe

• turn each non-terminal to an abstract class
• turn each right-hand side of a given non-terminal as (non-abstract) subclass of the

class for considered non-terminal
• chose fields & constructors of concrete classes appropriately
• terminal: concrete class as well, field/constructor for token’s value
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Example in Java

exp → exp op exp ∣ ( exp ) ∣ number
op → + ∣ − ∣ ∗

abstract public class Exp {
}

public class BinExp extends Exp { // exp −> exp op exp
public Exp l e f t , r i g h t ;
public Op op ;
public BinExp (Exp l , Op o , Exp r ) {

l e f t=l ; op=o ; r i g h t=r ; }
}

public class ParentheticExp extends Exp { // exp −> ( op )
public Exp exp ;
public ParentheticExp (Exp e ) {exp = l ; }

}

public class NumberExp extends Exp { // exp −> NUMBER
public number ; // token va lue
public Number( int i ) {number = i ; }

}

abstract public class Op { // non− t ermina l = a b s t r a c t
}

public class Plus extends Op { // op −> "+"
}

public class Minus extends Op { // op −> "−"
}

public class Times extends Op { // op −> "∗"
}

The latter classes are perhaps pushing it too far. It’s done to show that one can mechani-
cally use the recipe once grammar is given, so it’s a clean solution (perhaps one get better
efficiency if one would not make classes / objects out of everything, though).

3 − (4 − 5)

Exp e = new BinExp (
new NumberExp (3 ) ,
new Minus ( ) ,
new BinExp (new Parenthet icExpr (

new NumberExp (4 ) ,
new Minus ( ) ,
new NumberExp ( 5 ) ) ) )
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Pragmatic deviations from the recipe

• it’s nice to have a guiding principle, but no need to carry it too far . . .
• To the very least: the ParentheticExpr is completely without purpose: grouping

is captured by the tree structure⇒ that class is not needed
• some might prefer an implementation of

op → + ∣ − ∣ ∗

as simply integers, for instance arranged like

public class BinExp extends Exp { // exp −> exp op exp
public Exp l e f t , r i g h t ;
public int op ;
public BinExp (Exp l , int o , Exp r ) {

pos=p ; l e f t=l ; oper=o ; r i g h t=r ; }
public f ina l stat ic int PLUS=0, MINUS=1, TIMES=2;

}

and used as BinExpr.PLUS etc.

Recipe for ASTs, final words:

• space considerations for AST representations are irrelevant in most cases
• clarity and cleanness trumps “quick hacks” and “squeezing bits”
• some deviation from the recipe or not, the advice still holds:

Do it systematically

A clean grammar is the specification of the syntax of the language and thus the parser.
It is also a means of communicating with humans what the syntax of the language is,
at least communicating with pros, like participants of a compiler course, who of course
can read BNF . . . A clean grammar is a very systematic and structured thing which
consequently can and should be systematically and cleanly represented in an AST,
including judicious and systematic choice of names and conventions (nonterminal exp
represented by class Exp, non-terminal stmt by class Stmt etc)

Extended BNF may help alleviate the pain

BNF

exp → exp addop term ∣ term
term → term mulop factor ∣ factor
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EBNF

exp → term{ addop term }
term → factor{ mulop factor }

but remember:

• EBNF just a notation, just because we do not see (left or right) recursion in { . . . }, does not
mean there is no recursion.

• not all parser generators support EBNF
• however: often easy to translate into loops- 8

• does not offer a general solution if associativity etc. is problematic

Pseudo-code representing the EBNF productions

procedure exp ;
begin
term ; { r e c u r s i v e c a l l }
while token = "+" or token = "−"
do

match ( token ) ;
term ; // r e c u r s i v e c a l l

end
end

procedure term ;
begin

factor ; { r e c u r s i v e c a l l }
while token = "∗ "
do

match ( token ) ;
factor ; // r e c u r s i v e c a l l

end
end

How to produce “something” during RD parsing?

Recursive descent

So far (mostly): RD = top-down (parse-)tree traversal via recursive procedure.9 Possible outcome:
termination or failure.

• Now: instead of returning “nothing” (return type void or similar), return some meaningful,
and build that up during traversal

• for illustration: procedure for expressions:
– return type int,
– while traversing: evaluate the expression

8That results in a parser which is somehow not “pure recursive descent”. It’s “recursive descent, but
sometimes, let’s use a while-loop, if more convenient concerning, for instance, associativity”

9Modulo the fact that the tree being traversed is “conceptual” and not the input of the traversal procedure;
instead, the traversal is “steered” by stream of tokens.



4 Parsing
4.4 LL-parsing (mostly LL(1)) 129

Evaluating an exp during RD parsing

function exp ( ) : int ;
var temp : int
begin

temp := term ( ) ; { r e c u r s i v e c a l l }
while token = "+" or token = "−"

case token of
"+" : match ( "+" ) ;

temp := temp + term ( ) ;
" − " : match ( " − " )

temp := temp − term ( ) ;
end

end
return temp ;

end

Building an AST: expression

function exp ( ) : syntaxTree ;
var temp , newtemp : syntaxTree
begin

temp := term ( ) ; { r e c u r s i v e c a l l }
while token = "+" or token = "−"

case token of
"+" : match ( "+" ) ;

newtemp := makeOpNode ( "+" ) ;
l e f tCh i l d (newtemp) := temp ;
r i gh tCh i l d (newtemp) := term ( ) ;
temp := newtemp ;

" − " : match ( " − " )
newtemp := makeOpNode ( " − " ) ;
l e f tCh i l d (newtemp) := temp ;
r i gh tCh i l d (newtemp) := term ( ) ;
temp := newtemp ;

end
end
return temp ;

end

• note: the use of temp and the while loop

Building an AST: factor

factor → ( exp ) ∣ number

function factor ( ) : syntaxTree ;
var f a c t : syntaxTree
begin

case token of
" ( " : match ( " ( " ) ;

f a c t := exp ( ) ;
match ( " ) " ) ;

number :
match (number )
f a c t := makeNumberNode(number ) ;
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else : e r r o r . . . // f a l l through
end
return f a c t ;

end

Building an AST: conditionals

if -stmt → if ( exp ) stmt [else stmt]
function ifStmt ( ) : syntaxTree ;
var temp : syntaxTree
begin

match ( " i f " ) ;
match ( " ( " ) ;
temp := makeStmtNode ( " i f " )
t e s tCh i l d ( temp) := exp ( ) ;
match ( " ) " ) ;
thenChi ld ( temp) := stmt ( ) ;
i f token = " else "
then match " else " ;

e l s eCh i l d ( temp) := stmt ( ) ;
else e l s eCh i l d ( temp) := ni l ;
end
return temp ;

end

Building an AST: remarks and “invariant”

• LL(1) requirement: each procedure/function/method (covering one specific non-terminal)
decides on alternatives, looking only at the current token

• call of function A for non-terminal A:
– upon entry: first terminal symbol for A in token
– upon exit: first terminal symbol after the unit derived from A in token

• match("a") : checks for "a" in token and eats the token (if matched).

LL(1) parsing

• remember LL(1) grammars & LL(1) parsing principle:

LL(1) parsing principle

1 look-ahead enough to resolve “which-right-hand-side” non-determinism.

• instead of recursion (as in RD): explicit stack
• decision making: collated into the LL(1) parsing table
• LL(1) parsing table:

– finite data structure M (for instance, a 2 dimensional array)10

M ∶ ΣN ×ΣT → ((ΣN ×Σ∗) + error)
– M[A,a] = w

• we assume: pure BNF
10Often, depending on the book, the entry in the parse table does not contain a full rule as here, needed

is only the right-hand-side. In that case the table is of type ΣN ×ΣT → (Σ∗
+error).
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Construction of the parsing table

Table recipe

1. If A→ α ∈ P and α⇒∗ aβ, then add A→ α to table entry M[A,a]
2. If A→ α ∈ P and α⇒∗ ε and S $⇒∗ βAaγ (where a is a token (=non-terminal) or $), then

add A→ α to table entry M[A,a]
Table recipe (again, now using our old friends First and Follow)

Assume A→ α ∈ P .
1. If a ∈ First(α), then add A→ α to M[A,a].
2. If α is nullable and a ∈ Follow(A), then add A→ α to M[A,a].

Example: if-statements

• grammars is left-factored and not left recursive

stmt → if -stmt ∣ other
if -stmt → if ( exp ) stmt else−part

else−part → else stmt ∣ ε
exp → 0 ∣ 1

First Follow
stmt other, if $,else
if -stmt if $,else
else−part else, ε $,else
exp 0,1 )

Example: if statement: “LL(1) parse table”
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• 2 productions in the “red table entry”
• thus: it’s technically not an LL(1) table (and it’s not an LL(1) grammar)
• note: removing left-recursion and left-factoring did not help!

Saying that it’s “not-an-LL(1)-table” is perhaps a bit nit-picking. The shape is according to the
required format. It’s only that in the slot marked red, there are two rules. That’s a conflict and
makes it at least not a legal LL(1) table. So, if in an exam question, the task is “build the LL(1)-
table for the following grammar . . . .. Is the grammar LL(1)”. Then one is supposed to fill up a
table like that, and then point out, if there is a double entry. to point out that the grammar is
not LL(1). Similar remarks later for LR-parsers. Actually, for LR-parsers, tools like yacc build
up a table (not an LL, but an LR-table) and. in case of double entries, making a choice which
one to include. The user, in those cases, will reveive a warning about the grammar containing a
corresponding conflict.

LL(1) table-based algo

while the top of the parsing stack /= $
i f the top of the parsing stack is terminal a

and the next input token = a
then

pop the parsing stack ;
advance the input ; // ``match ' '

else i f the top the parsing is non-terminal A
and the next input token is a terminal or $
and parsing table M[A,a] contains

production A→X1X2 . . .Xn

then (∗ generate ∗)
pop the parsing stack
for i ∶= n to 1 do
push Xi onto the stack ;

else error
i f the top of the stack = $
then accept

end
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LL(1): illustration of run of the algo

The most interesting steps are of course those dealing with the dangling else, namely those with
the non-terminal else−part at the top of the stack. That’s where the LL(1) table is ambiguous.
In principle, with else−part on top of the stack (in the picture it’s just L), the parser table allows
always to make the decision that the “current statement” resp “current conditional” is done.

Expressions

exp → exp addop term ∣ term
addop → + ∣ −

term → term mulop factor ∣ factor
mulop → ∗

factor → ( exp ) ∣ number

left-recursive ⇒ not LL(k)
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exp → term exp′
exp′ → addop term exp′ ∣ ε

addop → + ∣ −

term → factor term′

term′ → mulop factor term′ ∣ ε
mulop → ∗

factor → ( exp ) ∣ n

First Follow
exp (,number $, )
exp′ +,−, ε $, )
addop +,− (,number
term (,number $, ),+,−
term′ ∗, ε $, ),+,−
mulop ∗ (,number
factor (,number $, ),+,−,∗

Expressions: LL(1) parse table

Error handling

• at the least: do an understandable error message
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• give indication of line / character or region responsible for the error in the source file
• potentially stop the parsing
• some compilers do error recovery

– give an understandable error message (as minimum)
– continue reading, until it’s plausible to resume parsing ⇒ find more errors
– however: when finding at least 1 error: no code generation
– observation: resuming after syntax error is not easy

Error messages

• important:
– try to avoid error messages that only occur because of an already reported error!
– report error as early as possible, if possible at the first point where the program cannot

be extended to a correct program.
– make sure that, after an error, one doesn’t end up in a infinite loop without reading any

input symbols.
• What’s a good error message?

– assume: that the method factor() chooses the alternative ( exp ) but that it, when
control returns from method exp(), does not find a )

– one could report : left paranthesis missing
– But this may often be confusing, e.g. if what the program text is: ( a + b c )
– here the exp() method will terminate after ( a + b, as c cannot extend the ex-

pression). You should therefore rather give the message error in expression or
left paranthesis missing.

Handling of syntax errors using recursive descent
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Syntax errors with sync stack

Procedures for expression with "error recovery"
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4.5 Bottom-up parsing

Bottom-up parsing: intro

"R" stands for right-most derivation.

LR(0) • only for very simple grammars
• approx. 300 states for standard programming languages
• only as warm-up for SLR(1) and LALR(1)

SLR(1) • expressive enough for most grammars for standard PLs
• same number of states as LR(0)
• main focus here

LALR(1) • slightly more expressive than SLR(1)
• same number of states as LR(0)
• we look at ideas behind that method as well

LR(1) covers all grammars, which can in principle be parsed by looking at the next token

There might seem to be a contradiction in the explanation of LR(0): if LR(0) is so weak that it
works only for unreasonably simple languages, how can one speak about that standard languages
have 300 states? The answer is, the other more expressive parsers (SLR(1) and LALR(1)) use the
same construction of states, so that’s why one can estimate the number of states, even if standard
languages don’t have an LR(0) parser; they may have an LALR(1)-parser, which has, it its core,
LR(0)-states.

Grammar classes overview (again)

unambiguous ambiguous

LR(k)
LR(1)

LALR(1)
SLR
LR(0)

LL(0)

LL(1)
LL(k)

LR-parsing and its subclasses

• right-most derivation (but left-to-right parsing)
• in general: bottom-up: more powerful than top-down
• typically: tool-supported (unlike recursive descent, which may well be hand-coded)
• based on parsing tables + explicit stack
• thankfully: left-recursion no longer problematic
• typical tools: yacc and friends (like bison, CUP, etc.)
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• another name: shift-reduce parser

LR parsing tablestates

tokens + non-terms

Example grammar

S′ → S
S → ABt7 ∣ . . .
A → t4t5 ∣ t1B ∣ . . .
B → t2t3 ∣ At6 ∣ . . .

• assume: grammar unambiguous
• assume word of terminals t1t2 . . . t7 and its (unique) parse-tree

• general agreement for bottom-up parsing:
– start symbol never on the right-hand side or a production
– routinely add another “extra” start-symbol (here S′)11

Parse tree for t1 . . . t7

S′

S

A

t1

B

t2 t3

B

A

t4 t5 t6 t7

Remember: parse tree independent from left- or right-most-derivation

11That will later be relied upon when constructing a DFA for “scanning” the stack, to control the reactions
of the stack machine. This restriction leads to a unique, well-defined initial state.
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LR: left-to right scan, right-most derivation?

Potentially puzzling question at first sight:

what?: right-most derivation, when parsing left-to-right?

• short answer: parser builds the parse tree bottom-up
• derivation:

– replacement of nonterminals by right-hand sides
– derivation: builds (implicitly) a parse-tree top-down

- sentential form: word from Σ∗ derivable from start-symbol

Right-sentential form: right-most derivation

S ⇒∗

r α

Slighly longer answer

LR parser parses from left-to-right and builds the parse tree bottom-up. When doing the parse,
the parser (implicitly) builds a right-most derivation in reverse (because of bottom-up).

Example expression grammar (from before)

exp → exp addop term ∣ term
addop → + ∣ −

term → term mulop factor ∣ factor
mulop → ∗

factor → ( exp ) ∣ number

(4.8)

exp

term

term

factor

number ∗

factor

number

Bottom-up parse: Growing the parse tree

exp

term

term

factor

number ∗

factor

number
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number∗number ↪ factor ∗number↪ term ∗number↪ term ∗ factor↪ term↪ exp

Reduction in reverse = right derivation

Reduction

n∗n ↪ factor ∗n↪ term ∗n↪ term ∗ factor↪ term↪ exp

Right derivation

n∗n ⇐r factor ∗n⇐r term ∗n⇐r term ∗ factor⇐r term⇐r exp

• underlined part:
– different in reduction vs. derivation
– represents the “part being replaced”

∗ for derivation: right-most non-terminal
∗ for reduction: indicates the so-called handle (or part of it)

• consequently: all intermediate words are right-sentential forms

Handle

Definition 4.5.1 (Handle). Assume S ⇒∗

r αAw ⇒r αβw. A production A → β at position k
following α is a handle of αβw. We write ⟨A→ β, k⟩ for such a handle.

Note:

• w (right of a handle) contains only terminals
• w: corresponds to the future input still to be parsed!
• αβ will correspond to the stack content (β the part touched by reduction step).
• the ⇒r -derivation-step in reverse:

– one reduce-step in the LR-parser-machine
– adding (implicitly in the LR-machine) a new parent to children β (= bottom-up!)

• “handle”-part β can be empty (= ε)
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Schematic picture of parser machine (again)

. . . if 1 + 2 ∗ ( 3 + 4 ) . . .

q0q1

q2

q3 ⋱
qn

Finite control

. . .

unbounded extra memory (stack)

q2

Reading “head”
(moves left-to-right)

General LR “parser machine” configuration

• stack:
– contains: terminals + non-terminals (+ $)
– containing: what has been read already but not yet “processed”

• position on the “tape” (= token stream)
– represented here as word of terminals not yet read
– end of “rest of token stream”: $, as usual

• state of the machine
– in the following schematic illustrations: not yet part of the discussion
– later : part of the parser table, currently we explain without referring to the state of the

parser-engine
– currently we assume: tree and rest of the input given
– the trick ultimately will be: how do achieve the same without that tree already given

(just parsing left-to-right)

Schematic run (reduction: from top to bottom)

$ t1t2t3t4t5t6t7 $
$ t1 t2t3t4t5t6t7 $
$ t1t2 t3t4t5t6t7 $
$ t1t2t3 t4t5t6t7 $
$ t1B t4t5t6t7 $
$A t4t5t6t7 $
$At4 t5t6t7 $
$At4t5 t6t7 $
$AA t6t7 $
$AAt6 t7 $
$AB t7 $
$ABt7 $
$S $
$S′ $
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2 basic steps: shift and reduce

• parsers reads input and uses stack as intermediate storage
• so far: no mention of look-ahead (i.e., action depending on the value of the next token(s)),

but that may play a role, as well

Shift

Move the next input symbol (terminal) over to the top of the stack (“push”)

Reduce

Remove the symbols of the right-most subtree from the stack and replace it by the non-terminal
at the root of the subtree (replace = “pop + push”).

• decision easy to do if one has the parse tree already!
• reduce step: popped resp. pushed part = right- resp. left-hand side of handle

The remark that it’s “easy to do” refers to something that is illustrated next: the question namely
the decision-making process of the parser. should the parser do a shift or a reduce and if so,
reduce with what rule. If one assumes the “target” parse-tree as already given (as we currently do
in our presentation, for instance also in the following slides), then tree embodies those decisions.
Ultimately, of course, the tree is not given a priori, it’s the parser’s task to build the tree (at least
implicitly) by making those decisions about what the next step is (shift or reduce).

Example: LR parse for “+” (given the tree)

E′ → E
E → E +n ∣ n

CST

E′

E

E

n + n
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Run

parse stack input action
1 $ n+n$ shift
2 $n +n$ red:. E → n
3 $E +n$ shift
4 $E + n$ shift
5 $E +n $ reduce E → E +n
6 $E $ red.: E′ → E
7 $E′ $ accept

note: line 3 vs line 6!; both contain E on top of stack

(right) derivation: reduce-steps “in reverse”

E′ ⇒ E ⇒ E +n⇒ n+n

The example is supposed to shed light on how the machine can make decisions assuming that the
tree is already given. For that, one should compare the situation in stage 3 and state 6. In both
situations, the machine has the same stack content (containing only the end-marker and E on top
of the stack). However, at stage 3, the machine does a shift, whereas in stage 6, it does a reduce.
Since the stack content (representing the “past” of the parse, i.e., the already processed input) is
the identical in both cases, the parser machine is necessarily in the same state in both stages, which
mean, it cannot be the state that makes the difference. What then? In the example, the form of
the parse tree shows what the parser should do. But of course the tree is not available. Instead
(and not surprisingly). If the past input cannot be used to make the distinction, one takes the
“future” input. Maybe not all of it (as that would correspond to the tree), but part of it. That’s
a form of a look-ahead (that will not yet be done for LR(0), as that for is without look-ahead).

Example with ε-transitions: parentheses

S′ → S
S → (S )S ∣ ε

side remark: unlike previous grammar, here:

• production with two non-terminals on the right⇒ difference between left-most and right-most derivations (and mixed ones)
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Parentheses: run and right-most derivation

CST

S′

S

(

S

ε )

S

ε

Run

parse stack input action
1 $ ( )$ shift
2 $ ( )$ reduce S → ε
3 $ (S )$ shift
4 $ (S ) $ reduce S → ε
5 $ (S )S $ reduce S → (S )S
6 $S $ reduce S′ → S
7 $S′ $ accept

Note: the 2 reduction steps for the ε productions

Right-most derivation and right-sentential forms

S′ ⇒r S ⇒r (S )S ⇒r (S )⇒r ( )

Right-sentential forms & the stack

- sentential form: word from Σ∗ derivable from start-symbol

Right-sentential form: right-most derivation

S ⇒∗

r α

• right-sentential forms:
– part of the “run”
– but: split between stack and input
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parse stack input action
1 $ n+n$ shift
2 $n +n$ red:. E → n
3 $E +n$ shift
4 $E + n$ shift
5 $E +n $ reduce E → E +n
6 $E $ red.: E′

→ E

7 $E′ $ accept

E′
⇒r E ⇒r E +n⇒r n+n

n+n↪ E +n↪ E ↪ E′

E′ ⇒r E ⇒r E +n ∥ ∼ E + ∥ n ∼ E ∥ +n⇒r n ∥ +n ∼∥ n+n

The ∥ here is introduced as “ad-hoc” notation to illustrate the separation between the
parse stack on the left and the future input on the right.

Viable prefixes of right-sentential forms and handles

• right-sentential form: E +n
• viable prefixes of RSF

– prefixes of that RSF on the stack
– here: 3 viable prefixes of that RSF: E, E +, E +n

• handle: remember the definition earlier
• here: for instance in the sentential form n+n

– handle is production E → n on the left occurrence of n in n+n (let’s write
n1 +n2 for now)

– note: in the stack machine:
∗ the left n1 on the stack
∗ rest +n2 on the input (unread, because of LR(0))

• if the parser engine detects handle n1 on the stack, it does a reduce-step
• However (later): reaction depends on current state of the parser engine
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A typical situation during LR-parsing

General design for an LR-engine

• some ingredients clarified up-to now:
– bottom-up tree building as reverse right-most derivation,
– stack vs. input,
– shift and reduce steps

• however: 1 ingredient missing: next step of the engine may depend on
– top of the stack (“handle”)
– look ahead on the input (but not for LL(0))
– and: current state of the machine (same stack-content, but different reactions

at different stages of the parse)

But what are the states of an LR-parser?

General idea:

Construct an NFA (and ultimately DFA) which works on the stack (not the input). The
alphabet consists of terminals and non-terminals ΣT ∪ΣN . The language

Stacks(G) = {α ∣ α may occur on the stack during
LR-parsing of a sentence in L(G) }

is regular!
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LR(0) parsing as easy pre-stage

• LR(0): in practice too simple, but easy conceptual step towards LR(1), SLR(1) etc.
• LR(1): in practice good enough, LR(k) not used for k > 1

LR(0) item

production with specific “parser position” . in its right-hand side

• . : “meta-symbol” (not part of the production)

LR(0) item for a production A→ βγ

A→ β.γ

• item with dot at the beginning: initial item
• item with dot at the end: complete item

LR(0) parsing is introduced as easy pre-stage for the more expressive forms of bottom-up
parsing later. In itself, it’s not expressive enough to be practivally useful. But the con-
struction underlies directly or at least conceptually the more complex parser constructions
to come. In particular: for LR(0) parsing, the core of the construction is the so-called
LR(0)-DFA, based on LR(0)-items. This construction is directly also used for SLR-parsing.
For LR(1) and LALR(1), the construction of the corresponding DFA is not identical, but
analogous to the construction of LR(0)-DFA.

Example: items of LR-grammar

Grammar for parentheses: 3 productions

S′ → S
S → (S )S ∣ ε

8 items

S′ → .S
S′ → S.
S → . (S )S
S → ( .S )S
S → (S. )S
S → (S ) .S
S → (S )S.
S → .

• S → ε gives S → . as item (not S → ε. and S → .ε)
• side remark for later: it will turn out: grammar is not LR(0)
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Another example: items for addition grammar

Grammar for addition: 3 productions

E′ → E
E → E +n ∣ n

(coincidentally also:) 8 items

E′ → .E
E′ → E.
E → .E +n
E → E.+n
E → E + .n
E → E +n.
E → .n
E → n.

• also here, it will turn out: not an LR(0) grammar

Finite automata of items

• general set-up: items as states in an automaton
• automaton: “operates” not on the input, but the stack
• automaton either

– first NFA, afterwards made deterministic (subset construction), or
– directly DFA

States formed of sets of items

In a state marked by/containing item

A→ β.γ

• β on the stack
• γ: to be treated next (terminals on the input, but can contain also non-terminals)

State transitions of the NFA

• X ∈ Σ
• two kinds of transitions

Terminal or non-terminal

A→ α.Xη A→ αX.η
X
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Epsilon (X: non-terminal here)

A→ α.Xη X → .βε

• In case X = terminal (i.e. token) =
– the left step corresponds to a shift step12

• for non-terminals (see next slide):
– interpretation more complex: non-terminals are officially never on the input
– note: in that case, item A→ α.Xη has two (kinds of) outgoing transitions

Transitions for non-terminals and ε

• so far: we never pushed a non-terminal from the input to the stack, we replace in a
reduce-step the right-hand side by a left-hand side

• but: replacement in a reduce steps can be seen as
1. pop right-hand side off the stack,
2. instead, “assume” corresponding non-terminal on input,
3. eat the non-terminal an push it on the stack.

• two kinds of transitions
• assume production X → β and initial item X → .β

Transitions

Terminal or non-terminal

A→ α.Xη A→ αX.η
X

Epsilon (X: non-terminal here)

Given production X → β:

A→ α.Xη X → .βε

12We have explained shift steps so far as: parser eats one terminal (= input token) and pushes it on the
stack.
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NFA: parentheses

S′ → .S S′ → S.

S → . (S )S S → . S → (S )S.

S → ( .S )S S → (S. )S

S → (S ) .S

S

ε
ε

( ε
ε

S

)

S

ε

ε

In the figure, we us colors are used for illustration, only, i.e., they are not officially part
of the construction. The colors are intended to represent the following:

• “reddish”: complete items
• “blueish”: init-item (less important)
• “violet’tish”: both.

Furthermore, you may notice for the initial items:

• one per production of the grammar
• that’s where the ε-transisitions go into, but
• with exception of the initial state (with S′-production): no outgoing edges from the

complete items.

Note the uniformity of the ε-transitions in the following sense. For each production with a
given non-terminal (for instance S in the given example), there is one ingoing ε-transition
from each state/item where the . is in front of said non-terminal.

To look forward, and the role of the ε-transitions. Those are allowed for non-determistic
automata, but not for DFAs. The underlying construction (discussed later) is building the
ε-closure, in this case the close of A′ → A. If one does that directly, one obtains directly
a DFA (as opposed to first do an NFA to make deterministic in a second phase).

Initial and final states

initial states:

• we make our lives easier : assume one extra start symbol say S′ (augmented grammar)⇒ initial item S′ → .S as (only) initial state
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final states:

• acceptance condition of the overall machine: a bit more complex
– input must be empty
– stack must be empty except the (new) start symbol
– NFA has a word to say about acceptence

∗ but not in form of being in an accepting state
∗ so: no accepting states
∗ but: accepting action (see later)

The NFA (or later DFA) has a specific task, it is used to “scan” the stack (at least
conceptually), not the input. The automaton is not so much for accepting a stack and then
stop, it’s more like determining the state that corresponds to the current stack content.
Therefore there are no accepting states in the sense of a FSA!

NFA: addition

E′ → .E E′ → E.

E → .E +n E → .n E → n.

E → E.+n E → E + .n E → E +n.

E

ε
ε

ε
ε

E

n

+ n

Determinizing: from NFA to DFA

• standard subset-construction13
• states then contain sets of items
• important: ε-closure
• also: direct construction of the DFA possible

In the following two slides, we should the DFAs corresponding to the NFAs shown before.
For the construction on how to determinize NFAs (and minimize them), we refer to the
corresponding sections in the chapter about lexing. Anyway, we will afterwards also look
at a direct construction of the DFA (without the detour over NFAs). That will result in
the same automata anyway.

13Technically, we don’t require here a total transition function, we leave out any error state.
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DFA: parentheses

S′ → .S

S → . (S )S

S → .

0

S′ → S.

1

S → ( .S )S

S → . (S )S

S → .

2

S → (S. )S

3

S → (S ) .S

S → . (S )S

S → .

4

S → (S )S.

5

S

(

S
(

)

(
S

DFA: addition

E′ → .E

E → .E +n
E → .n

0

E′ → E.

E → E.+n

1

E → n.
2

E → E + .n
3

E → E +n.
4

E

n +

n

Direct construction of an LR(0)-DFA

• quite easy: simply build in the closure already

ε-closure

• if A→ α.Bγ is an item in a state where
• there are productions B → β1 ∣ β2 . . . then
• add items B → .β1 , B → .β2 . . . to the state
• continue that process, until saturation

initial state

S′ → .S
plus closure
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Direct DFA construction: transitions

. . .

A1 → α1.Xβ1

. . .

A2 → α2.Xβ2

. . .

A1 → α1X.β1

A2 → α2X.β2

plus closure

X

• X: terminal or non-terminal, both treated uniformely
• All items of the form A→ α.Xβ must be included in the post-state
• and all others (indicated by ". . . ") in the pre-state: not included
• re-check the previous examples: outcome is the same

How does the DFA do the shift/reduce and the rest?

• we have seen: bottom-up parse tree generation
• we have seen: shift-reduce and the stack vs. input
• we have seen: the construction of the DFA

But: how does it hang together?

We need to interpret the “set-of-item-states” in the light of the stack content and figure
out the reaction in terms of

• transitions in the automaton
• stack manipulations (shift/reduce)
• acceptance
• input (apart from shifting) not relevant when doing LR(0)

and the reaction better be uniquely determined . . . .

Stack contents and state of the automaton

• remember: at any config. of stack/input in a run
1. stack contains words from Σ∗
2. DFA operates deterministically on such words

• the stack contains “abstraction of the past”:
• when feeding that “past” on the stack into the automaton

– starting with the oldest symbol (not in a LIFO manner)
– starting with the DFA’s initial state⇒ stack content determines state of the DFA

• actually: each prefix also determines uniquely a state
• top state:

– state after the complete stack content
– corresponds to the current state of the stack-machine
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⇒ crucial when determining reaction

State transition allowing a shift

• assume: top-state (= current state) contains item

X → α.aβ

• construction thus has transition as follows

. . .

X → α.aβ
. . .

s
. . .

X → αa.β
. . .

t

a

• shift is possible
• if shift is the correct operation and a is terminal symbol corresponding to the current

token: state afterwards = t

State transition: analogous for non-terminals

Production

X → α.Bβ

Transition

. . .

X → α.Bβ

s
. . .

X → αB.β

t
B

• same as before, now with non-terminal B
• note: we never read non-term from input
• not officially called a shift
• corresponds to the reaction followed by a reduce step, it’s not the reduce step itself
• think of it as follows: reduce and subsequent step

– not as: replace on top of the stack the handle (right-hand side) by non-term B,
– but instead as:

1. pop off the handle from the top of the stack
2. put the non-term B “back onto the input” (corresponding to the above state
s)

3. eat the B and shift it to the stack
• later: a goto reaction in the parse table
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State (not transition) where a reduce is possible

• remember: complete items
• assume top state s containing complete item A→ γ.

. . .

A→ γ.

s

• a complete right-hand side (“handle”) γ on the stack and thus done
• may be replaced by right-hand side A⇒ reduce step
• builds up (implicitly) new parent node A in the bottom-up procedure
• Note: A on top of the stack instead of γ:

– new top state!
– remember the “goto-transition” (shift of a non-terminal)

A conceptual picture for the reduce step is as follows. As said, we remove the handle from
the stack, and “pretend”, as if the A is next on the input, and thus we “shift” it on top of
the stack, doing the corresponding A-transition.

Remarks: states, transitions, and reduce steps

• ignoring the ε-transitions (for the NFA)
• there are 2 “kinds” of transitions in the DFA

1. terminals: reals shifts
2. non-terminals: “following a reduce step”

No edges to represent (all of) a reduce step!

• if a reduce happens, parser engine changes state!
• however: this state change is not represented by a transition in the DFA (or NFA

for that matter)
• especially not by outgoing errors of completed items

• if the (rhs of the) handle is removed from top stack ⇒
– “go back to the (top) state before that handle had been added”: no edge for

that
• later: stack notation simply remembers the state as part of its configuration

Example: LR parsing for addition (given the tree)

E′ → E
E → E +n ∣ n



156 4 Parsing
4.5 Bottom-up parsing

CST

E′

E

E

n + n

Run

parse stack input action
1 $ n+n$ shift
2 $n +n$ red:. E → n
3 $E +n$ shift
4 $E + n$ shift
5 $E +n $ reduce E → E +n
6 $E $ red.: E′ → E
7 $E′ $ accept

note: line 3 vs line 6!; both contain E on top of stack

This is a revisit of an example resp. slide from earlier, when we discussed how a parser can do
decisions, resp. that it would be easy to do decisions for the parser machine if it had the tree
already. Unfortunately it has the tree not available, the only thing it has is “the past” which is
represented (partially) by the stack content. As discussed earlier, interesting in the run are stage
3 and state 6, which have the same stack content, which also means, the parser is in the same
state of its LR(0)-DFA. With the automaton constructed as before, that’s state 1. The state 1 is
important, as it illustrates a shift/reduce conflict. Remember: reduce-steps are not represented
in the LR(0)-automaton via transitions. They are only implicitly represented by complete items.
Thus, as shift-reduce conflict is not characterized by 2 outgoing edges. It’s one outgoing edge
from a state containing a complete item.

Earlier we hinted at that an automaton could make decisions based on a look-head. That is not yet
done: the LR(0), in state 1 especially, can do a reduce step or a shift step, which constitutes the
conflict. Later, we will see under which circumstances, looking at the “next symbol” can help to
make the decision. That leads to SLR parsing (or even later to LR(1)/LALR(1)). In the particular
situation of state 1 in the example, the next possible symbol would be + or else $
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DFA of addition example

E′ → .E

E → .E +n
E → .n

0

E′ → E.

E → E.+n

1

E → n.
2

E → E + .n
3

E → E +n.
4

E

n +

n

• note line 3 vs. line 6
• both stacks = E ⇒ same (top) state in the DFA (state 1)

The point being made when lookig at that 1 is the following: the state is a complete state (a
state containing a complete item). Besides that, there is an outgoing edge. That means, in that
state, there are two reactions possible: a shift (following the edge) and a reduce, as indicated by
the complete item. That indicates a conflict-situation, especially if we don’t make use of look-
aheads, as we do currently, when discussing LR(0). The conflict-situation is called, expectely a
“shift-reduce-conflict”, more precisely an LR(0)-shift/reduce conflict. The qualification LR(0) is
necessary, as sometimes, a more close look at the situation and taking a look-ahead into account
may defuse the conflict. Those more fine-grainend considerations will lead to extensions of the
plain LR(0)-parsing (like SLR(0), or LR(1) and LALR(1)).

LR(0) grammars

LR(0) grammar

The top-state alone determines the next step.

• especially: no shift/reduce conflicts in the form shown
• thus: previous addition-grammar is not LR(0)

Simple parentheses

A → (A ) ∣ a
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DFA

A′ → .A

A→ . (A )

A→ .a

0

A′ → A.

1

A→ ( .A )

A→ . (A )

A→ .a

3

A→ a.
2

A→ (A. )

4
A→ (A ) .

5

A

a(

(
a

A

)

Simple parentheses is LR(0)

DFA

A′ → .A

A→ . (A )

A→ .a

0

A′ → A.

1

A→ ( .A )

A→ . (A )

A→ .a

3

A→ a.
2

A→ (A. )

4
A→ (A ) .

5

A

a(

(
a

A

)

Remarks

state possible action
0 only shift
1 only red: (A′ → A)
2 only red: (A→ a)
3 only shift
4 only shift
5 only red (A→ (A ))
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NFA for simple parentheses (bonus slide)

A′ → .A A′ → A.

A→ . (A ) A→ .a

A→ ( .A ) A→ (A. )

A→ a.

A→ (A ) .

A

ε
ε

ε
ε(

a

A )

For completeness sake: that’s the NFA for the “simple parentheses”.

Parsing table for an LR(0) grammar

• table structure: slightly different for SLR(1), LALR(1), and LR(1) (see later)
• note: the “goto” part: “shift” on non-terminals (only 1 non-terminal A here)
• corresponding to the A-labelled transitions

state action rule input goto
( a ) A

0 shift 3 2 1
1 reduce A′ → A
2 reduce A→ a
3 shift 3 2 4
4 shift 5
5 reduce A→ (A )

Parsing of ( (a ) )

stage parsing stack input action

1 $0 ( (a ) )$ shift
2 $0(3 (a ) )$ shift
3 $0(3(3 a ) )$ shift
4 $0(3(3a2 ) )$ reduce A→ a
5 $0(3(3A4 ) )$ shift
6 $0(3(3A4)5 )$ reduce A→ (A )

7 $0(3A4 )$ shift
8 $0(3A4)5 $ reduce A→ (A )

9 $0A1 $ accept

• note: stack on the left
– contains top state information
– in particular: overall top state on the right-most end

• note also: accept action
– reduce wrt. to A′ → A and
– empty stack (apart from $, A, and the state annotation)⇒ accept
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Parse tree of the parse

A′

A

(

A

(

A

a ) )

• As said:
– the reduction “contains” the parse-tree
– reduction: builds it bottom up
– reduction in reverse: contains a right-most derivation (which is “top-down”)

• accept action: corresponds to the parent-child edge A′ → A of the tree

Parsing of erroneous input

• empty slots it the table: “errors”

stage parsing stack input action
1 $0 ( (a )$ shift
2 $0(3 (a )$ shift
3 $0(3(3 a )$ shift
4 $0(3(3a2 )$ reduce A→ a
5 $0(3(3A4 )$ shift
6 $0(3(3A4)5 $ reduce A→ (A )

7 $0(3A4 $ ????

stage parsing stack input action
1 $0 ( )$ shift
2 $0(3 )$ ?????

Invariant

important general invariant for LR-parsing: never shift something “illegal” onto the stack

LR(0) parsing algo, given DFA

let s be the current state, on top of the parse stack

1. s contains A→ α.Xβ, where X is a terminal
• shift X from input to top of stack. The new state pushed on the stack: state t where s XÐ→ t
• else: if s does not have such a transition: error

2. s contains a complete item (say A→ γ.): reduce by rule A→ γ:
• A reduction by S′ → S: accept, if input is empty; else error:
• else:

pop: remove γ (including “its” states from the stack)
back up: assume to be in state u which is now head state

push: push A to the stack, new head state t where u AÐ→ t (in the DFA)
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DFA parentheses again: LR(0)?

S′ → S
S → (S )S ∣ ε

S′ → .S

S → . (S )S
S → .

0

S′ → S.

1

S → ( .S )S
S → . (S )S
S → .

2

S → (S. )S
3

S → (S ) .S
S → . (S )S
S → .

4

S → (S )S.
5

S

(

S(

)
(

S

Look at states 0, 2, and 4

DFA addition again: LR(0)?

E′ → E
E → E +n ∣ n

E′ → .E

E → .E +n
E → .n

0

E′ → E.

E → E.+n

1

E → n.
2

E → E + .n
3

E → E +n.
4

E

n +

n

How to make a decision in state 1?

Decision? If only we knew the ultimate tree already . . .

. . . especially the parts still to come
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CST

E′

E

E

n + n

Run

parse stack input action
1 $ n+n$ shift
2 $n +n$ red:. E → n
3 $E +n$ shift
4 $E + n$ shift
5 $E +n $ reduce E → E +n
6 $E $ red.: E′ → E
7 $E′ $ accept

• current stack: represents already known part of the parse tree
• since we don’t have the future parts of the tree yet:⇒ look-ahead on the input (without building the tree yet)
• LR(1) and its variants: look-ahead of 1 (= look at the current type of the token)

Addition grammar (again)

E′ → .E

E → .E +n
E → .n

0

E′ → E.

E → E.+n

1

E → n.
2

E → E + .n
3

E → E +n.
4

E

n +

n

• How to make a decision in state 1? (here: shift vs. reduce)⇒ look at the next input symbol (in the token)

One look-ahead

• LR(0), not useful, too weak
• add look-ahead, here of 1 input symbol (= token)
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• different variations of that idea (with slight difference in expresiveness)
• tables slightly changed (compared to LR(0))
• but: still can use the LR(0)-DFAs

Resolving LR(0) reduce/reduce conflicts

LR(0) reduce/reduce conflict:

. . .

A→ α.

. . .

B → β.

SLR(1) solution: use follow sets of non-terms

• If Follow(A) ∩ Follow(B) = ∅⇒ next symbol (in token) decides!
– if token ∈ Follow(α) then reduce using A→ α
– if token ∈ Follow(β) then reduce using B → β
– . . .

Resolving LR(0) shift/reduce conflicts

LR(0) shift/reduce conflict:

. . .

A→ α.

. . .

B1 → β1.b1γ1

B2 → β2.b2γ2

b1

b2

SLR(1) solution: again: use follow sets of non-terms

• If Follow(A) ∩ {b1,b2, . . .} = ∅⇒ next symbol (in token) decides!
– if token ∈ Follow(A) then reduce using A→ α, non-terminal A determines new top state
– if token ∈ {b1,b2, . . .} then shift. Input symbol bi determines new top state
– . . .

SLR(1) requirement on states (as in the book)

• formulated as conditions on the states (of LR(0)-items)
• given the LR(0)-item DFA as defined
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SLR(1) condition, on all states s

1. For any item A→ α.Xβ in s with X a terminal, there is no complete item B → γ. in s with
X ∈ Follow(B).

2. For any two complete items A→ α. and B → β. in s, Follow(α) ∩ Follow(β) = ∅

Revisit addition one more time

E′ → .E

E → .E +n
E → .n

0

E′ → E.

E → E.+n

1

E → n.
2

E → E + .n
3

E → E +n.
4

E

n +

n

• Follow(E′) = {$}⇒ – shift for +
– reduce with E′ → E for $ (which corresponds to accept, in case the input is empty)

SLR(1) algo

let s be the current state, on top of the parse stack

1. s contains A → α.Xβ, where X is a terminal and X is the next token on the input,
then

• shift X from input to top of stack. The new state pushed on the stack: state t where
s

XÐ→ t14

2. s contains a complete item (say A→ γ.) and the next token in the input is in Follow(A):
reduce by rule A→ γ:

• A reduction by S′ → S: accept, if input is empty15

• else:
pop: remove γ (including “its” states from the stack)
back up: assume to be in state u which is now head state

push: push A to the stack, new head state t where u AÐ→ t

3. if next token is such that neither 1. or 2. applies: error

14Cf. to the LR(0) algo: since we checked the existence of the transition before, the else-part is missing
now.

15Cf. to the LR(0) algo: This happens now only if next token is $. Note that the follow set of S′ in the
augmented grammar is always only $
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Parsing table for SLR(1)

E′ → .E

E → .E +n
E → .n

0

E′ → E.

E → E.+n

1

E → n.
2

E → E + .n
3

E → E +n.
4

E

n +

n

state input goto
n + $ E

0 s ∶ 2 1
1 s ∶ 3 accept
2 r ∶ (E → n)
3 s ∶ 4
4 r ∶ (E → E +n) r ∶ (E → E +n)

for state 2 and 4: n ∉ Follow(E)
Parsing table: remarks

• SLR(1) parsing table: rather similar-looking to the LR(0) one
• differences: reflect the differences in: LR(0)-algo vs. SLR(1)-algo
• same number of rows in the table ( = same number of states in the DFA)
• only: colums “arranged” differently

– LR(0): each state uniformely: either shift or else reduce (with given rule)
– now: non-uniform, dependent on the input. But that does not apply to the previous

example. We’ll see that in the next, then.
• it should be obvious:

– SLR(1) may resolve LR(0) conflicts
– but: if the follow-set conditions are not met: SLR(1) shift-shift and/or SLR(1) shift-

reduce conflicts
– would result in non-unique entries in SLR(1)-table16

SLR(1) parser run (= “reduction”)

state input goto
n + $ E

0 s ∶ 2 1
1 s ∶ 3 accept
2 r ∶ (E → n)

3 s ∶ 4
4 r ∶ (E → E +n) r ∶ (E → E +n)

16by which it, strictly speaking, would no longer be an SLR(1)-table :-)
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stage parsing stack input action

1 $0 n+n+n$ shift: 2
2 $0n2 +n+n$ reduce: E → n
3 $0E1 +n+n$ shift: 3
4 $0E1+3 n+n$ shift: 4
5 $0E1+3n4 +n$ reduce: E → E +n
6 $0E1 n$ shift 3
7 $0E1+3 n$ shift 4
8 $0E1+3n4 $ reduce: E → E +n
9 $0E1 $ accept

Corresponding parse tree

E′

E

E

E

n + n + n

Revisit the parentheses again: SLR(1)?

Grammar: parentheses

S′ → S
S → (S )S ∣ ε

Follow set

Follow(S) = {),$}
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DFA for parentheses

S′ → .S

S → . (S )S

S → .

0

S′ → S.

1

S → ( .S )S

S → . (S )S

S → .

2

S → (S. )S

3

S → (S ) .S

S → . (S )S

S → .

4

S → (S )S.

5

S

(

S
(

)

(

S

SLR(1) parse table

state input goto
( ) $ S

0 s ∶ 2 r ∶ S → ε r ∶ S → ε 1
1 accept
2 s ∶ 2 r ∶ S → ε r ∶ S → ε 3
3 s ∶ 4
4 s ∶ 2 r ∶ S → ε r ∶ S → ε 5
5 r ∶ S → (S )S r ∶ S → (S )S

Parentheses: SLR(1) parser run (= “reduction”)

state input goto
( ) $ S

0 s ∶ 2 r ∶ S → ε r ∶ S → ε 1
1 accept
2 s ∶ 2 r ∶ S → ε r ∶ S → ε 3
3 s ∶ 4
4 s ∶ 2 r ∶ S → ε r ∶ S → ε 5
5 r ∶ S → (S )S r ∶ S → (S )S
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stage parsing stack input action
1 $0 ( ) ( )$ shift: 2
2 $0(2 ) ( )$ reduce: S → ε
3 $0(2S3 ) ( )$ shift: 4
4 $0(2S3)4 ( )$ shift: 2
5 $0(2S3)4(2 )$ reduce: S → ε
6 $0(2S3)4(2S3 )$ shift: 4
7 $0(2S3)4(2S3)4 $ reduce: S → ε
8 $0(2S3)4(2S3)4S5 $ reduce: S → (S )S
9 $0(2S3)4S5 $ reduce: S → (S )S
10 $0S1 $ accept

Remarks

Note how the stack grows, and would continue to grow if the sequence of ( ) would continue.
That’s characteristic for a right-recursive formulation of rules, and may constitute a problem for
LR-parsing (stack-overflow).

Ambiguity & LR-parsing

• LR(k) (and LL(k)) grammars: unambiguous
• definition/construction: free of shift/reduce and reduce/reduce conflict (given the chosen

level of look-ahead)
• However: ambiguous grammar tolerable, if (remaining) conflicts can be solved “meaningfully”

otherwise:

Additional means of disambiguation:

1. by specifying associativity / precedence “externally”
2. by “living with the fact” that LR parser (commonly) prioritizes shifts over reduces

• for the second point (“let the parser decide according to its preferences”):
– use sparingly and cautiously
– typical example: dangling-else
– even if parsers makes a decision, programmar may or may not “understand intuitively”

the resulting parse tree (and thus AST)
– grammar with many S/R-conflicts: go back to the drawing board

Example of an ambiguous grammar
stmt → if -stmt ∣ other

if -stmt → if ( exp ) stmt∣ if ( exp ) stmt else stmt
exp → 0 ∣ 1

In the following, E for exp, etc.
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Simplified conditionals

Simplified “schematic” if-then-else

S → I ∣ other
I → if S ∣ if S else S

Follow-sets

Follow
S′ {$}
S {$,else}
I {$,else}

• since ambiguous: at least one conflict must be somewhere

DFA of LR(0) items

S′ → .S
S → .I
S → .other
I → .if S
I → .if S else S

0

S → I.

2
S′ → S.

1

S → other.
3

I → if .S
I → if .S else S
S → .I
S → .other
I → .if S
I → .if S else S

4

I → if S else .S
S → .I
S → .other
I → .if S
I → .if S else S

6

I → if S .
I → if S .else S

5

I → if S else S.
7

S

I

other

if

I

other

S else

if

I

Sif
other

Checking the previously shown conditions for SLR(1) parsing, one sees that there is a SLR(1)
conflict in state 5: the follow-set of I contains else. In the following tables, only the shift-reaction
is added in the corresponding slot, since that is the conventional preferred reaction of a parser tool,
facing a shift-reduce conflict.
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Simple conditionals: parse table

Grammar

S → I (1)∣ other (2)
I → if S (3)∣ ifS else S (4)

SLR(1)-parse-table, conflict “resolved”

state input goto
if else other $ S I

0 s ∶ 4 s ∶ 3 1 2
1 accept
2 r ∶ 1 r ∶ 1
3 r ∶ 2 r ∶ 2
4 s ∶ 4 s ∶ 3 5 2
5 s ∶ 6 r ∶ 3
6 s ∶ 4 s ∶ 3 7 2
7 r ∶ 4 r ∶ 4

• shift-reduce conflict in state 5: reduce with rule 3 vs. shift (to state 6)
• conflict there: resolved in favor of shift to 6
• note: extra start state left out from the table

Parser run (= reduction)

state input goto
if else other $ S I

0 s ∶ 4 s ∶ 3 1 2
1 accept
2 r ∶ 1 r ∶ 1
3 r ∶ 2 r ∶ 2
4 s ∶ 4 s ∶ 3 5 2
5 s ∶ 6 r ∶ 3
6 s ∶ 4 s ∶ 3 7 2
7 r ∶ 4 r ∶ 4

stage parsing stack input action
1 $0 if if other else other$ shift: 4
2 $0if 4 if other else other$ shift: 4
3 $0if 4if 4 other else other$ shift: 3
4 $0if 4if 4other3 else other$ reduce: 2
5 $0if 4if 4S5 else other$ shift 6
6 $0if 4if 4S5else6 other$ shift: 3
7 $0if 4if 4S5else6other3 $ reduce: 2
8 $0if 4if 4S5else6S7 $ reduce: 4
9 $0if 4I2 $ reduce: 1

10 $0S1 $ accept
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Parser run, different choice

state input goto
if else other $ S I

0 s ∶ 4 s ∶ 3 1 2
1 accept
2 r ∶ 1 r ∶ 1
3 r ∶ 2 r ∶ 2
4 s ∶ 4 s ∶ 3 5 2
5 s ∶ 6 r ∶ 3
6 s ∶ 4 s ∶ 3 7 2
7 r ∶ 4 r ∶ 4

stage parsing stack input action
1 $0 if if other else other$ shift: 4
2 $0if 4 if other else other$ shift: 4
3 $0if 4if 4 other else other$ shift: 3
4 $0if 4if 4other3 else other$ reduce: 2
5 $0if 4if 4S5 else other$ reduce 3
6 $0if 4I2 else other$ reduce 1
7 $0if 4S5 else other$ shift 6
8 $0if 4S5else6 other$ shift 3
9 $0if 4S5else6other3 $ reduce 2

10 $0if 4S5else6S7 $ reduce 4
11 $0S1 $ accept

Parse trees: simple conditions

shift-precedence: conventional

S

if

I

if

S

other else

S

other
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“wrong” tree

S

if

I

if

S

other else

S

other

standard “dangling else” convention

“an else belongs to the last previous, still open (= dangling) if-clause”

Use of ambiguous grammars

• advantage of ambiguous grammars: often simpler
• if ambiguous: grammar guaranteed to have conflicts
• can be (often) resolved by specifying precedence and associativity
• supported by tools like yacc and CUP . . .

E′ → E
E → E +E ∣ E ∗E ∣ n
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DFA for + and ×

E′ → .E
E → .E +E

E → .E ∗E

E → .n

0

E′ → E.

E → E.+E

E → E.∗E

1

E → E + .E

E → .E +E

E → .E ∗E

E → .n

3

E → E +E.

E → E.+E

E → E.∗E

5

E → E ∗E.

E → E.+E

E → E.∗E

6

E → n.
2

E → E ∗ .E

E → .E +E

E → .E ∗E

E → .n

4

E

n

+

∗

n
E

∗

∗

+

E

+

n

States with conflicts

• state 5
– stack contains $. . . E +E$
– for input $: reduce, since shift not allowed from $
– for input +; reduce, as + is left-associative
– for input ∗: shift, as ∗ has precedence over +

• state 6:
– stack contains $. . . E ∗E$
– for input $: reduce, since shift not allowed from $
– for input +; reduce, a ∗ has precedence over +
– for input ∗: shift, as ∗ is left-associative

• see also the table on the next slide

Parse table + and ×

state input goto
n + ∗ $ E

0 s ∶ 2 1
1 s ∶ 3 s ∶ 4 accept
2 r ∶ E → n r ∶ E → n r ∶ E → n
3 s ∶ 2 5
4 s ∶ 2 6
5 r ∶ E → E +E s ∶ 4 r ∶ E → E +E
6 r ∶ E → E ∗E r ∶ E → E ∗E r ∶ E → E ∗E
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How about exponentiation (written ↑ or ∗∗)?

Defined as right-associative. See exercise

The interesting line is the one for state 5, and the difference in reaction when ecncountering a
addition vs. a multiplication sign. Basically, the shift for multiplication realizes the fact that
multiplication has a higher precedence than addition

For comparison: unambiguous grammar for + and ∗

Unambiguous grammar: precedence and left-assoc built in

E′ → E
E → E +T ∣ T
T → T ∗n ∣ n

Follow
E′ {$} (as always for start symbol)
E {$,+}
T {$,+,∗}

DFA for unambiguous + and ×

E′ → .E
E → .E +T

E → .T
E → .T ∗n
E → .n

0

E′ → E.

E → E.+T

1
E → E + .T

T → .T ∗n
T → .n

2

T → n.
3

E → T .

T → T .∗n

4

T → T ∗ .n
5

E → E +T .

T → T .∗n

6

T → T ∗n.
7

E

n

T

+

n
T

∗

n

∗

DFA remarks

• the DFA now is SLR(1)
– check states with complete items
state 1: Follow(E′) = {$}
state 4: Follow(E) = {$,+}
state 6: Follow(E) = {$,+}
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state 3/7: Follow(T ) = {$,+,∗}
– in no case there’s a shift/reduce conflict (check the outgoing edges vs. the follow set)
– there’s not reduce/reduce conflict either

LR(1) parsing

• most general from of LR(1) parsing
• aka: canonical LR(1) parsing
• usually: considered as unecessarily “complex” (i.e. LALR(1) or similar is good enough)
• “stepping stone” towards LALR(1)

Basic restriction of SLR(1)

Uses look-ahead, yes, but only after it has built a non-look-ahead DFA (based on LR(0)-items)

A help to remember

SLR(1) “improved” LR(0) parsing LALR(1) is “crippled” LR(1) parsing.

Limits of SLR(1) grammars

Assignment grammar fragment17

stmt → call-stmt ∣ assign-stmt
call-stmt → identifier

assign-stmt → var ∶= exp
var → [ exp ] ∣ identifier
exp → var ∣ n

Assignment grammar fragment, simplified

S → id ∣ V ∶=E
V → id
E → V ∣ n

17Inspired by Pascal, analogous problems in C . . .
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non-SLR(1): Reduce/reduce conflict

Checking the previously shown conditions for SLR(1)-parsing shows (amongst other) a reduce/re-
duce conflict situation in the state on the right-hand side. The R/R conflict is on the symbol $:
the parser does not know which production to use in the reduce step. The red terminals are not
part of the state, they are just shown for illustration (representing the follow symbols of S resp.
of V ). The LR(1) construction (sketched on the next slides) builds in one additional look-ahead
symbol officially as parts of the items and thus states.

Situation can be saved: more look-ahead

The (sketch of the ) automaton here looks pretty similar to the previous one. However, we should
think now of the non-terminals as officially part of the items. The interesting piece in this example
is the transition from the initial state following the id-transition, to the state containing the items→ id. and V → id.. That was the state on the previous slide with the reduce/reduce conflict (on
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the following symbol $). Now, without showing the construction in detail (later we give at least
the rules for the construction of the NFA, not the DFA with the closure): the interesting situation
is, in the first state, the item S → .V ∶=E,$. With the . in front of the V , that’s when we have to
take the ε-closure into account, basically adding also the initial items (here one initial item) for
the productions for V into account. Now, by adding that item V → .id, we can use the additional
“look-ahead piece of information” in that item to mark that V was added to the close when being
/in front of an ∶=. That leads (in this situation) to the item of the form [V → .id, ∶=]. This
information is more specific than the knowledge about the general follow-set of V , which constains
∶= and $. Now, by recording that extra piece of information in the close, the state remembers
that the only thing at the current state that is allowed to follow the V is the ∶=. That will defuse
the discussed conflict, namely as follows: if we follow the id-arrow, we end up in the state on the
right-hand side. Such a transition does not touch the additional new look-ahead information (here
the $ resp the ∶= symbol). Thus, in the state at the right-hand side, the reduce-reduce conflict has
disappeared!

LALR(1) (and LR(1)): Being more precise with the follow-sets

• LR(0)-items: too “indiscriminate” wrt. the follow sets
• remember the definition of SLR(1) conflicts
• LR(0)/SLR(1)-states:

– sets of items18 due to subset construction
– the items are LR(0)-items
– follow-sets as an after-thought

Add precision in the states of the automaton already

Instead of using LR(0)-items and, when the LR(0) DFA is done, try to add a little disambiguation
with the help of the follow sets for states containing complete items, better make more fine-
grained items from the very start:

• LR(1) items
• each item with “specific follow information”: look-ahead

LR(1) items

• main idea: simply make the look-ahead part of the item
• obviously: proliferation of states19

LR(1) items

[A→ α.β,a] (4.9)

• a: terminal/token, including $

18That won’t change in principle (but the items get more complex)
19Not to mention if we wanted look-ahead of k > 1, which in practice is not done, though.



178 4 Parsing
4.5 Bottom-up parsing

LALR(1)-DFA (or LR(1)-DFA)

Remarks on the DFA

• Cf. state 2 (seen before)
– in SLR(1): problematic (reduce/reduce), as Follow(V ) = {∶=,$}
– now: diambiguation, by the added information

• LR(1) would give the same DFA

Full LR(1) parsing

• AKA: canonical LR(1) parsing
• the best you can do with 1 look-ahead
• unfortunately: big tables
• pre-stage to LALR(1)-parsing

SLR(1)

LR(0)-item-based parsing, with afterwards adding some extra “pre-compiled” info (about follow-
sets) to increase expressivity

LALR(1)

LR(1)-item-based parsing, but afterwards throwing away precision by collapsing states, to save
space
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LR(1) transitions: arbitrary symbol

• transitions of the NFA (not DFA)

X-transition

[A→ α.Xβ,a] [A→ αX.β,a]X

LR(1) transitions: ε

ε-transition

for all

B → β1 ∣ β2 . . . and all b ∈ First(γa)

[A→ α.Bγ ,a] [B → .β ,b]
ε

including special case (γ = ε)

for all B → β1 ∣ β2 . . .

[A→ α.B ,a] [B → .β ,a]
ε
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LALR(1) vs LR(1)

LALR(1)
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LR(1)

Core of LR(1)-states

• actually: not done that way in practice
• main idea: collapse states with the same core

Core of an LR(1) state

= set of LR(0)-items (i.e., ignoring the look-ahead)

• observation: core of the LR(1) item = LR(0) item
• 2 LR(1) states with the same core have same outgoing edges, and those lead to states with

the same core



182 4 Parsing
4.5 Bottom-up parsing

LALR(1)-DFA by as collapse

• collapse all states with the same core
• based on above observations: edges are also consistent
• Result: almost like a LR(0)-DFA but additionally

– still each individual item has still look ahead attached: the union of the “collapsed”
items

– especially for states with complete items [A→ α,a,b, . . .] is smaller than the follow set
of A

– ⇒ less unresolved conflicts compared to SLR(1)

Concluding remarks of LR / bottom up parsing

• all constructions (here) based on BNF (not EBNF)
• conflicts (for instance due to ambiguity) can be solved by

– reformulate the grammar, but generarate the same language20

– use directives in parser generator tools like yacc, CUP, bison (precedence, assoc.)
– or (not yet discussed): solve them later via semantical analysis
– NB: not all conflics are solvable, also not in LR(1) (remember ambiguous languages)

LR/bottom-up parsing overview

advantages remarks
LR(0) defines states also used by

SLR and LALR
not really used, many con-
flicts, very weak

SLR(1) clear improvement over
LR(0) in expressiveness,
even if using the same
number of states. Table
typically with 50K entries

weaker than LALR(1).
but often good enough.
Ok for hand-made parsers
for small grammars

LALR(1) almost as expressive as
LR(1), but number of
states as LR(0)!

method of choice for most
generated LR-parsers

LR(1) the method covering
all bottom-up, one-
look-ahead parseable
grammars

large number of states
(typically 11M of entries),
mostly LALR(1) preferred

Remeber: once the table specific for LR(0), . . . is set-up, the parsing algorithms all work the same

Error handling

Minimal requirement

Upon “stumbling over” an error (= deviation from the grammar): give a reasonable & understand-
able error message, indicating also error location. Potentially stop parsing
20If designing a new language, there’s also the option to massage the language itself. Note also: there are

inherently ambiguous languages for which there is no unambiguous grammar.
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• for parse error recovery
– one cannot really recover from the fact that the program has an error (an syntax error

is a syntax error), but
– after giving decent error message:

∗ move on, potentially jump over some subsequent code,
∗ until parser can pick up normal parsing again
∗ so: meaningfull checking code even following a first error

– avoid: reporting an avalanche of subsequent spurious errors (those just “caused” by the
first error)

– “pick up” again after semantic errors: easier than for syntactic errors

Error messages

• important:
– avoid error messages that only occur because of an already reported error!
– report error as early as possible, if possible at the first point where the program cannot

be extended to a correct program.
– make sure that, after an error, one doesn’t end up in an infinite loop without reading

any input symbols.
• What’s a good error message?

– assume: that the method factor() chooses the alternative ( exp ) but that it , when
control returns from method exp(), does not find a )

– one could report : right parenthesis missing
– But this may often be confusing, e.g. if what the program text is: ( a + b c )
– here the exp() method will terminate after ( a + b, as c cannot extend the ex-

pression). You should therefore rather give the message error in expression or
right parenthesis missing.

Error recovery in bottom-up parsing

• panic recovery in LR-parsing
– simple form
– the only one we shortly look at

• upon error: recovery ⇒
– pops parts of the stack
– ignore parts of the input

• until “on track again”
• but: how to do that
• additional problem: non-determinism

– table: constructed conflict-free under normal operation
– upon error (and clearing parts of the stack + input): no guarantee it’s clear how to

continue⇒ heuristic needed (like panic mode recovery)

Panic mode idea

• try a fresh start,
• promising “fresh start” is: a possible goto action
• thus: back off and take the next such goto-opportunity
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Possible error situation

parse stack input action
1 $0a1b2c3(4d5e6 f )gh . . .$ no entry for f
2 $0a1b2c3Bv gh . . .$ back to normal
3 $0a1b2c3Bvg7 h . . .$ . . .

state input goto
. . . ) f g . . . . . . A B . . .

. . .
3 u v
4 − − −
5 − − −
6 − − − −
. . .
u − − reduce . . .
v − − shift ∶ 7
. . .

Panic mode recovery

Algo

1. Pop states for the stack until a state is found with non-empty goto entries
2. • If there’s legal action on the current input token from one of the goto-states, push token

on the stack, restart the parse.
• If there’s several such states: prefer shift to a reduce
• Among possible reduce actions: prefer one whose associated non-terminal is least general

3. if no legal action on the current input token from one of the goto-states: advance input until
there is a legal action (or until end of input is reached)

Example again

parse stack input action
1 $0a1b2c3(4d5e6 f )gh . . .$ no entry for f
2 $0a1b2c3Bv gh . . .$ back to normal
3 $0a1b2c3Bvg7 h . . .$ . . .

• first pop, until in state 3
• then jump over input

– until next input g
– since f and ) cannot be treated

• choose to goto v (shift in that state)

Panic mode may loop forever

parse stack input action
1 $0 (n n )$
2 $0(6 n n )$
3 $0(6n5 n )$
4 $0(6factor4 n )$
6 $0(6term3 n )$
7 $0(6exp10 n )$ panic!
8 $0(6factor4 n )$ been there before: stage 4!
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Typical yacc parser table

some variant of the expression grammar again

command → exp
exp → term ∗ factor ∣ factor

term → term ∗ factor ∣ factor
factor → n ∣ ( exp )

Panicking and looping

parse stack input action
1 $0 (n n )$
2 $0(6 n n )$
3 $0(6n5 n )$
4 $0(6factor4 n )$
6 $0(6term3 n )$
7 $0(6exp10 n )$ panic!
8 $0(6factor4 n )$ been there before: stage 4!

• error raised in stage 7, no action possible
• panic:

1. pop-off exp10
2. state 6: 3 goto’s

exp term factor
goto to 10 3 4
with n next: action there — reduce r4 reduce r6

3. no shift, so we need to decide between the two reduces
4. factor : less general, we take that one

How to deal with looping panic?

• make sure to detec loop (i.e. previous “configurations”)
• if loop detected: doen’t repeat but do something special, for instance

– pop-off more from the stack, and try again
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– pop-off and insist that a shift is part of the options

Left out (from the book and the pensum)

• more info on error recovery
• expecially: more on yacc error recovery
• it’s not pensum, and for the oblig: need to deal with CUP-specifics (not classic yacc specifics

even if similar) anyhow, and error recovery is not part of the oblig (halfway decent error
handling is).

4.6 Material from [6]

Top-down parsing

Growing the parse tree from the root to the leaves. The fringe or frontier of the tree (i.e., the current
leaves) are a mixture of terminals and non-terminals. Then growing the tree means expanding one
non-terminal with one corresponding right-hand side. On that very abstract level, that process
contains 2 forms of non-determinism: with more than one non-terminal in the current sentential
form, which one should one expand? Secondly, which production or rule should be used for that
expansion. Of course one should not expand randomly, but “guided” towards the input word, i.e.,
of course the word being parsed (which consists of terminals only), should give indication, which
choice is to be made. Above we made the distinction that there are two kind of choices: “where”
and “how” to expand. As it turns out, the “where”-choice is not fundamentally important in the
following sense: if there are 2 non-terminal to expand, choosing the left-one first or the right first
will result in the same ultimate parse tree(s). After all, when a tree is built, it does not matter
any more, in which order the branches had been added (except that we grow the tree top-down,
starting from the root, i.e., the start symbol of the grammar).

Now, since the “where” question does not matter, one simply decises that one routinely expands
the left-most non-terminal. That process then is called a left-most derivation. In the section for
top-down parsing, it will always be a parse-tree construction connected to a left-most derivation.
It is also rather natural for a (top-down) parser to construct a left-most derivation considering the
fact that the parser eats tokens one by one going “from left to right” through its input.

With left-most derivation so “natural” one may ask: is there a place of right-most derivations¿Not
in this section about top-down parsing, it’s always left-most. Later, thought, bottom-up parsers
build the parse tree in a way, that is connected to right-most derivations! Still, those parsers
eat the tokens left-to-right. The working of such bottom-up parsers are a bit less intuitive than
top-down parsers, but they are quite important and we come back to them later.

Now with the question of “where” to expand a non-terminal out of the way, one can concentrate
on “how” (i.e., which production to choose). In general, there is more an one production per
non-terminal. A grammar which has one rule only per non-terminal would either be “trivial” or
“defective” (one can shortly reflect on that). Now, if there is more than one production to choose
from, it may be the case that one choice will lead to a successful parse-tree (i.e., a successful parse)
and another one will not. To find a successful (left-most) derivation and corresponding parse-tree
therefore will involve backtracking. Another consequence could be that there is more than one
successful parse-tree. In that case, the grammar is called ambiguous.

Backtracking in parsing is to be avoided (and also one does generally want to avoid ambiguous
grammars, or to the very least: for an ambiguous grammar there must be a rational and clear way
to resolve any ambiguity, that will also be discussed later).
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The intution of how to avoid backtracking is pretty simple. The parser works from left-to-right, it
faces a non-terminal and “the rest of the input” and has to make a decision: which rule to apply.
Now, since the parser does not want to “rewind” input (in avoidance of backtracking), it’s the
future rest of the input which should determine the production to choose. The amount of next
tokens needed to make the decision is called the look-ahead. In the easiest case, it’s the next single
token in which case one has a look-ahead of 1.

In the more general cases, the parser might be able to make a correct decision based on a fixed
look-ahead of size k. There may also be grammars for which backtracking can be avoided, but one
cannot give a fixed k for having a maximal look-head up-front. The look-ahead may be arbitrarily
long, depending on the word. Finally, of course, there are grammars where no amount of look-ahead
can resolve the decision.

We are interested in the easier (and also practically relevant) cases where backtracking can be
avoided, with, say 1 look-ahead.

Transforming a grammar for top-down parsing.

1. A top-down parser with oracular choice
As the name implies, oracular choice is some “algorithm” where the top-down parser always
chooses the right production. Oracular can be understood as having unlimited look-ahead.
In that case, the running-time is proportional to the length of the input, obviously.
One problem indicated by the example is that there are inconsistent choices. Inconsistent
means: given a non-terminal and the complete rest of the input, different choices are being
made. That means: there cannot be a top-down parser that avoids backtracking!
The derivation is based on the standard naive expression grammar (which contains la
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Semantic analysis
Chapter

What
is it

about?
Learning Targets of this Chapter
1. “attributes”
2. attribute grammars
3. synthesized and inherited attributes
4. various applications of attribute

grammars

Contents

5.1 Introduction . . . . . . . . . . 188
5.2 Attribute grammars . . . . . 193
5.3 Signed binary numbers (SBN) 215
5.4 Attribute grammar SBN . . 216

5.1 Introduction

Semantic analysis in general

Semantic analysis or static analysis is a very broad and diverse topic. The lecture concentrates on
a few, but crucial aspects. This particular chapter here is concerned with attribute grammars. It’s
a generic or general “framework” to “semantic analysis”. Later chapters also deal with semantic
analysis, namely the one about symbol tables and for type checking. In the context of the lecture,
those chapters all work basically on (abstract syntax) trees (except that for the symbol tables and
for the type system, it’s not so visible). The fact that it’s a mechanism to “analyze trees” is most
visible for attribute grammars: context-free grammars describe trees and the semantic rules (see
later) added to the grammar specify how to analyze resulting trees.

Wrt. the general placement of semantic analysis in a compiler: First, not all semantic analyses are
“tree analyses”. Data flow analysis (on which we touch upon later) often works on graphs (typically
control flow graphs). Furthermore, it’s not the case, that semantic analysis restricted to be done
directly after parsing. There are many semantic analyses that are done at later stages (and on
other representations). In particular, it could be that a later intermediate reprasentation uses a
different form of syntax, closer to machine code (often call intermediate code). That syntax could
also be given by a grammar, meaning that a program in that syntax corresponds to a tree of that
syntax. As a result, one can apply techniques like attribute grammars also at that level (maybe
thereby using in on the AST, and later differently on some intermediate code).

Overview

On a very high level, the attribute grammar format does the following: it enhances a given grammar
by additional, so called semantic rules, which specify how trees conforming to the grammar should
be analysed.

Two points might be noted here. First, the AG formalism adds rules on top of context-free
grammars, but the intention is to specify analyses on trees formed according to the given grammar.
Secondly, it’s a specification of such tree analyses. The AG format is very general, meaning that
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it allows to express all kinds of ways attributes should be evaluated. If not constrained in some
way, the AG formalism can be seen as too expressive in that it leads to specifications contradict
themselves or does not lead to proper implementation.

Part of the chapter therefore will be concerned with restrictions it receives from the parser an
abstract syntax tree, and then “analyses” it. On a very high level, as far as attribute grammars is
concerned, semantic analysis is about “tree algorithms”.1 Attribute grammars is a formalism that
takes context-free grammars and adds so-called “semantical rules” to it. AGs in their general form
can be seen as a “specification” formalisism for attributes in a grammar.

Side remark: XML

As some side remark, and not part of the technical content of the lecture: XML is some “exchange
format” or markup language built around “trees”. “markup” is kind of like the opposite of “mark-
down” (tongue-in-cheek): mark-down allows easy textual representation, optimized for “human
consumption”. Mark-up easy consumption for “machines” (easy, unique parsing, easy exchange of
“texts”). That’s why XML reads so horrible to the naked eye.2 Anyway, since pieces of XML-
data are trees, there is also the notion of grammars according to which such trees are considered
well-formed. In the XML terminology, that corresponds basically to schemas.3 That being so,
there are tools that check whether a tree adheces to a given schema, a problem that in that form
does not present itself in parsing: the parser process generates only trees in the AST format. Since
XML processing is concerned with “tree processing” (checking, transformation etc), there are some
similarities with attribute grammars and some XML related technologies. We don’t go deeper than
that here.

Overview over the chapter resp. SA in general

• semantic analysis in general
• attribute grammars (AGs)
• symbol tables (not today)
• data types and type checking (not today)

1It should be noted that semantic analysis is not restricted to analysing abstract syntax trees that come
out of the parser. That’s, however, the placement in the lecture. Semantic analysis may also be
applied to intermediate representations other than abstract syntax trees. One example being control
flow graphs.

2The build.xml from the oblig is some example of some xml-kind of file, used for “building” a project
with ant.

3In UML context, the role of a grammar is taken by something with the slightly confusing title “meta-
model”.
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Where are we now?

What do we get from the parser?

• output of the parser: (abstract) syntax tree
• often: in anticipation: nodes in the tree contain “space” to be filled out by SA
• examples:

– for expression nodes: types
– for identifier/name nodes: reference or pointer to the declaration

assign-expr

subscript expr

identifier
a

identifier
index

additive expr

number
2

number
4

assign-expr

additive-expr

number

2

number

4

subscript-expr

identifier

index

identifier

a :array of int :int

:array of int :int

:int :int

:int :int

:int :int

: ?
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By “space”, one might think of fields or instance variables in an object-oriented setting. Fields can
be seen as one way to implenent “attributes”. When introducing attribute grammars, the notion of
attribute will be a specific concept, namely the specific form of attributes in an atrribute grammar.
But very general, an “attribute” means just a “property attached to some element”. Typically here,
attached to syntactic representations of the language, in particular to nodes in the abstract syntax
tree. Since the notion of attribute is this so general, it can take very different forms (like types,
data flow information, all kind of extra information). Also, attributes in that sense, need to be
“attached” to abstract syntax tree only. For instance, data flow information is extra information
(calculated by data flow analysis) not to a syntax tree, but to something called a control-flow
graph. So, since such graphs are not described by context-free grammars, and therefore, data flow
analyses will not be described by attribute grammars.4

General: semantic (or static) analysis

Rule of thumb

Check everything which is possible before executing (run-time vs. compile-time), but cannot al-
ready done during lexing/parsing (syntactical vs. semantical analysis)

Rest:

• Goal: fill out “semantic” info (typically in the AST)
• typically:

– all names declared? (somewhere/uniquely/before use)
– typing:

∗ is the declared type consistent with use
∗ types of (sub)-expression consistent with used operations

• border between sematical vs. syntactic checking not always 100% clear
– if a then ...: checked for syntax
– if a + b then ...: semantical aspects as well?

SA is nessessarily approximative

• note: not all can (precisely) be checked at compile-time
– division by zero?
– “array out of bounds”
– “null pointer deref” (like r.a, if r is null)

• but note also: exact type cannot be determined statically either

if x then 1 else "abc"

• statically: ill-typed5

4Besides the reason mentioned —data-flow analyses typically operate on graphs, not trees— there is a
second reason why DFA will in general not be done with AGs; the evaluation of AGs on a concrete tree
explicitly disallows cycles in the dependency graph (see later). DFA in the general form definitely will
have to handle cyclic situations.

5Unless some fancy behind-the-scence type conversions are done by the language (the compiler). Perhaps
print(if x then 1 else "abc") is accepted, and the integer 1 is implicitly converted to "1".
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• dynamically (“run-time type”): string or int, or run-time type error, if x turns out not
to be a boolean, or if it’s null

The fact that one cannot precisely check everything at compile-time is due to fundamental reasons.
It’s fundamentally impossible to predict the behavior of a program (provided, the programming
language is expressive enough = Turing complete, which can be taken as granted for all off-the-shelf
general programming languages). The “fundamental reasons” mentioned above basically is a result
of the famous halting problem. The particular version here is a consequence of that halting problem
and is know as Rice’s theorem. Actually it’s more pessimisic than the sentence on the slide:
Rice stipulates: all non-trivial semantic problems of a programming language are undecidable. If
it were otherwise, the halting problem would be decidable as well (which it isn’t, end-of-proof).
Note that approximative checking is doable, resp. that’s what the SA is doing anyhow.

As for type checking: the footnote refers to something which is a form of polymorphism, which
is a form of “laxness” or “liberarility” of the type system, which allows that some element of the
language can have more than one type. In the particular example, it would be a specific form
of polymorphism, namely (operator) overloading, in that + is used for addition as well as string
concatenation. Additionally, in this particular situation, 1 is not just a integere, but also a string.
The type checker may allow that, but if so, the later phases of the compiler must arrange it so
that 1 is actually converted to a string (assuming that integers and strings are not represented
uniformely).

SA remains tricky

A dream

However

• no standard description language
• no standard “theory”

– part of SA may seem ad-hoc, more “art” than “engineering”, complex
• but: well-established/well-founded (and non-ad-hoc) fields do exist

– type systems, type checking
– data-flow analysis . . . .

• in general
– semantic “rules” must be individually specified and implemented per language
– rules: defined based on trees (for AST): often straightforward to implement
– clean language design includes clean semantic rules
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When saying that there is no general standard theory, of course there would be the notion of
context-free grammars, a class of grammars more expressive than context free grammars, while
not yet as expressive as Turing machines (= full compuation power). Context-sensitive languages
are well-defined, but as a formalism, it’s too general, too unstructured to give much guiding light
when it comes to concrete problems being analysed. Context-sensitive grammars as such are not
on the pensum.

5.2 Attribute grammars

Attributes

Attribute

• a “property” or characteristic feature of something
• here: of language “constructs”. More specific in this chapter:
• of syntactic elements, i.e., for non-terminal and terminal nodes in syntax trees

Static vs. dynamic

• distinction between static and dynamic attributes
• association attribute ↔ element: binding
• static attributes: possible to determine at/determined at compile time
• dynamic attributes: the others . . .

With the concept of attribute so general, basically very many things can be subsumed under
being an attribute of “something”. After having a look at how attribute grammars are used for
“attribution” (or “binding” of values of some attribute to a syntactic element), we will normally
be concerned with more concrete attributes, like the type of something, or the value (and there
are many other examples). In the very general use of the word “attribute” and “attribution” (the
act of attributing something to something) is almost synonymous with “analysis” (here semantic
analysis). The analysis is concerned with figuring out the value of some attribute one is interested
in, for instance, the type of a syntactic construct. After having done so, the result of the analysis is
typically remembered (as opposed to being calculated over and over again), but that’s for efficiency
reasons. One way of remembering attributes is in a specific data structure, for attributes of
“symbols”, that kind of data structure is known as the symbol table.

Examples in our context

• data type of a variable : static/dynamic
• value of an expression: dynamic (but seldomly static as well)
• location of a variable in memory: typically dynamic (but in old FORTRAN: static)
• object-code: static (but also: dynamic loading possible)

The value of an expression, as stated, is typically not a static “attribute” (for reasons which I hope
are clear). Later, in this chapter, we will actually use values of expressions as attributes. That
can be done, for instance, if there are no variables mentioned in the expressions. The values of
those values typically are not known at compile-time and would not allow to calculate the value
at compile time. However, having no variables is exactly the situation we will see later.

As a side remark: even with variables, sometimes the compiler can figure out, that, in some
situations, the value of a variable is at some point is known in advance. In that case, an optimization

http://www.merriam-webster.com/dictionary/attribute
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could be to precompute the value and use that instead. To figure out whether or not that is the
case is typically done via data-flow analysis which operates on control-flow graph. That is therefore
not done via attribute grammars in general.

Attribute grammar in a nutshell

• AG: general formalism to bind “attributes to trees” (where trees are given by a CFG)6

• two potential ways to calculate “properties” of nodes in a tree:

“Synthesize” properties

define/calculate prop’s bottom-up

“Inherit” properties

define/calculate prop’s top-down

• allows both at the same time

Attribute grammar

CFG + attributes one grammar symbols + rules specifing for each production, how to determine
attributes

• evaluation of attributes: requires some thought, more complex if mixing bottom-up + top-
down dependencies

Example: evaluation of numerical expressions

Expression grammar (similar as seen before)

exp → exp + term ∣ exp − term ∣ term
term → term ∗ factor ∣ factor

factor → ( exp ) ∣ n

• goal now: evaluate a given expression, i.e., the syntax tree of an expression, resp:

more concrete goal

Specify, in terms of the grammar, how expressions are evaluated

• grammar: describes the “format” or “shape” of (syntax) trees
• syntax-directedness
• value of (sub-)expressions: attribute here

As stated earlier: values of syntactic entities are generally dynamic attributes and cannot therefore
be treated by an AG. In this simplistic AG example, it’s statically doable (because no variables,
no state-change etc.).

6Attributes in AG’s: static, obviously.
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Expression evaluation: how to do if on one’s own?

• simple problem, easy solvable without having heard of AGs
• given an expression, in the form of a syntax tree
• evaluation:

– simple bottom-up calculation of values
– the value of a compound expression (parent node) determined by the value of its
subnodes

– realizable, for example, by a simple recursive procedure7

Connection to AG’s

• AGs: basically a formalism to specify things like that
• however : general AGs will allow more complex calculations:

– not just bottom up calculations like here but also
– top-down, including both at the same time8

Pseudo code for evaluation

eval_exp ( e ) =
case
: : e equa l s PLUSnode −>

return eval_exp ( e . l e f t ) + eval_term ( e . r i g h t )
: : e equa l s MINUSnode −>

return eval_exp ( e . l e f t ) − eval_term ( e . r i g h t )
. . .
end case

AG for expression evaluation
productions/grammar rules semantic rules

1 exp1 → exp2 + term exp1 .val = exp2 .val + term .val
2 exp1 → exp2 − term exp1 .val = exp2 .val − term .val
3 exp → term exp .val = term .val
4 term1 → term2 ∗ factor term1 .val = term2 .val ∗ factor .val
5 term → factor term .val = factor .val
6 factor → ( exp ) factor .val = exp .val
7 factor → n factor .val = n.val

• specific for this example is:
– only one attribute (for all nodes), in general: different ones possible
– (related to that): only one semantic rule per production
– as mentioned: rules here define values of attributes “bottom-up” only

• note: subscripts on the symbols for disambiguation (where needed)

7Resp. a number of mutually recursive procedures, one for factors, one for terms, etc. See the next slide.
8Top-down calculations will not be needed for the simple expression evaluation example.
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Attributed parse tree

The attribute grammar (being purely synthesized = bottom-up) is very simple and hence, the
values in the attribute val should be self-explanatory. It

Possible dependencies

Possible dependencies (> 1 rule per production possible)

• parent attribute on childen attributes
• attribute in a node dependent on other attribute of the same node
• child attribute on parent attribute
• sibling attribute on sibling attribute
• mixture of all of the above at the same time
• but: no immediate dependence across generations

Attribute dependence graph

• dependencies ultimately between attributes in a syntax tree (instances) not between grammar
symbols as such⇒ attribute dependence graph (per syntax tree)

• complex dependencies possible:
– evaluation complex
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– invalid dependencies possible, if not careful (especially cyclic)

Sample dependence graph (for later example)

The graph belongs to an example we will revisit later. The dashed line represent the AST. The
bold arrows the dependence graph. Later, we will classify the attributes in that base (at least for
the non-terminals num) is inherited (“top-down”), whereas val is synthesized (“bottom-up”).

We will later have a look at what synthesized and inherited means. As we see in the example
already here, being synthesized is (in its more general form) not as simplistic as “dependence
only from attributes of children”. In the example the synthesized attribute val depends on its
inherited “sister attribute” base in most nodes. So, synthesized is not only “strictly bottom-up”,
it also goes “sideways” (from base to val). Now, this “sideways” dependence goes from inherited
to synthesized only but never the other way around. That’s fortunate, because in this way it’s
immediately clear that there are no cycles in the dependence graph. An evaluation (see later)
following this form of dependence is “down-up”, i.e., first top-down, and afterwards bottom-up
(but not then down again etc., the evaluation does not go into cycles).

Two-phase evaluation

Perhaps a too fine point concerning evaluation in the example. The above explanation highlighted
that the evaluation is “phased” in first a top-down evaluation and afterwards a bottom-up phase.
Conceptually, that is correct and gives a good intuition about the design of the dependencies of the
attribute. Two “refinements” of that picture may be in order, though. First, as explained later, a
dependence graph does not represent one possible evaluation (so it makes no real sense in speaking
of “the” evaluation of the given graph, if we think of the edges as individual steps). The graph
denotes which values need to be present before another value can be determined. Secondly, and
relatd to that: If we take that view seriously, it’s not strictly true that all inherited depenencies
are evaluated before all synthesized. “Conceptually” they are, in a way, but there is an amount
of “indepdendence” or “parallelism” possible. Looking at the following picture, which shows one
of many possible evaluation orders shows, for example that step 8 is filling an inherited attribute,
and that comes after 6 which deals with an synthesized one. But both steps are indepdedent, so
they could as well be done the other way around.

So, the picture “first top-down, then bottom-up” is conceptually correct and a good intuition, it
needs some fine-tuning when talking about when an indivdual step-by-step evaluation is done.
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Possible evaluation order

The numbers in the picture give one possible evaluation order. As mentioned earlier, there is in
general more than one possible way to evaluate dependency graph, in particular, when dealing with
a syntax tree, and not with the generate case of a “ syntax list” (considering lists as a degenerated
form of trees). Generally, the rules that say when an AG is properly done assure that all possible
evaluations give a unique value for all attributes, and the order of evaluation does not matter.
Those conditions assure that each attribute instance gets a value exactly once (which also implies
there are no cycles in the dependence graph).

Restricting dependencies

• general GAs allow bascially any kind of dependencies9

• complex/impossible to meaningfully evaluate (or understand)
• typically: restrictions, disallowing “mixtures” of dependencies

– fine-grained: per attribute
– or coarse-grained: for the whole attribute grammar

Synthesized attributes

bottom-up dependencies only (same-node dependency allowed).

Inherited attributes

top-down dependencies only (same-node and sibling dependencies allowed)

The classification in inherited = top-down and synthesized = bottom-up is a general guiding light.
The discussion about the previous figures showed that there might be some refinements like that
“sideways” dependencies are acceptable, not only strictly bottom-up dependencies.

9Apart from immediate cross-generation dependencies.
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Synthesized attributes (simple)

Synthesized attribute

A synthesized attribute is defined wholly in terms of the node’s own attributes, and those of its
children (or constants).

Rule format for synth. attributes

For a synthesized attribute s of non-terminal A, all semantic rules with A.s on the left-hand side
must be of the form

A.s = f(X1.b1, . . .Xn.bk) (5.1)

and where the semantic rule belongs to production A→X1 . . .Xn

• Slight simplification in the formula.

The “simplification” here is that we ignore the fact that one symbol can have in general many
attributes. So, we just write X1.b1 instead of X1.b1,1 . . .X1.b1.k1 which would more “correctly”
cover the situation in all generality, but doing so would not make the points more clear.

S-attributed grammar:

all attributes are synthesized

The simplification mentioned is to make the rules more readable, to avould all the subscript, while
keeping the spirit. The simplification is that we consider only 1 attribute per symbol. In general,
instead depend on A.a only, dependencies on A.a1, . . .A.al possible. Similarly for the rest of the
formula

Remarks on the definition of synthesized attributes

• Note the following aspects
1. a synthesized attribute in a symbol: cannot at the same time also be “inherited”.
2. a synthesized attribute:

– depends on attributes of children (and other attributes of the same node) only.
However:

– those attributes need not themselves be synthesized (see also next slide)

• in Louden:
– he does not allow “intra-node” dependencies
– he assumes (in his wordings): attributes are “globally unique”

Unfortunately, depending on the text-book the exact definitions (or the way it’s formulated) of
synthesized and inherited slightly deviate. But in spirit, of course, they all agree in principle. the
lecture is not so much concerned with the super-fine print in definitions, more with questions like
“given the following problem, write an AG”, and the conceptual picture of synthesized (bottom-up
and a bit of sideways), and inherited (top-down and perhaps a bit of sideways) helps in thinking
about that problem. Of course, all books agree: cycles must be avoided and all attributes need to
be uniquely defined. The concepts of synthesized and inherited attributes thereby helps to clarify
thinking about those problems. For intance, by having this “phased” evaluation discussed earlier
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(first down with the inherited attributes, then up with the synthesized one) makes clear: there
can’t be a cycle.

Don’t forget the purpose of the restriction

• ultimately: calculate values of the attributes
• thus: avoid cyclic dependencies
• one single synthesized attribute alone does not help much

S-attributed grammar

• restriction on the grammar, not just 1 attribute of one non-terminal
• simple form of grammar
• remember the expression evaluation example

S-attributed grammar:

all attributes are synthesized

Alternative, more complex variant

“Transitive” definition (A→X1 . . .Xn)

A.s = f(A.i1, . . . ,A.im,X1.s1, . . .Xn.sk)
• in the rule: the Xi.sj ’s synthesized, the Ai.ij ’s inherited
• interpret the rule carefully: it says:

– it’s allowed to have synthesized & inherited attributes for A
– it does not say: attributes in A have to be inherited
– it says: in an A-node in the tree: a synthesized attribute

∗ can depend on inherited att’s in the same node and
∗ on synthesized attributes of A-children-nodes

Pictorial representation

Conventional depiction
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General synthesized attributes

Note that in the previous example discussing the dependence graph with attributes base and val
was of this format and followed the convention: show the inherited base on the left, the synthesized
val on the right.

Inherited attributes

• in Louden’s simpler setting: inherited = non-synthesized

Inherited attribute

An inherited attribute is defined wholly in terms of the node’s own attributes, and those of its
siblings or its parent node (or constants).

Rule format

Rule format for inh. attributes

For an inherited attribute of a symbol X of X, all semantic rules mentioning X.i on the left-hand
side must be of the form

X.i = f(A.a,X1.b1, . . . ,X, . . .Xn.bk)
and where the semantic rule belongs to production A→X1 . . .X, . . .Xn

• note: mentioning of “all rules”, avoid conflicts.

Alternative definition (“transitive”)

Rule format

For an inherited attribute i of a symbol X, all semantic rules mentioning X.i on the left-hand
side must be of the form

X.i = f(A.i′,X1.b1, . . . ,X.b, . . .Xn.bk)
and where the semantic rule belongs to production A→X1 . . .X . . .Xn

• additional requirement: A.i′ inherited
• rest of the attributes: inherited or synthesized
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Simplistic example (normally done by the scanner)

CFG

number → numberdigit ∣ digit
digit → 0 ∣ 1 ∣ 2 ∣ 3 ∣ 4 ∣ 5 ∣ 6 ∣ 7 ∣ 8 ∣ 9 ∣

Attributes (just synthesized)

number val
digit val
terminals [none]

We will look at an AG solution. In practice, this conversion is typically done by the scanner already,
and the way it’s normally done is relying on provide functions of the implementing programming
language (all languages will support such conversion functions, either built-in or in some libraries).
For instance in Java, one could use the method valueOf(String s), for instance used as static
method Integer.valueOf("900") of the class of integers. Obviously, not everything done by
an AG can be done already by the scanner. But this particular example used as warm-up is so
simple that it could be done by the scanner, and it typically is done there already.
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Numbers: Attribute grammar and attributed tree

A-grammar

attributed tree

Attribute evaluation: works on trees

i.e.: works equally well for

• abstract syntax trees
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• ambiguous grammars

Seriously ambiguous expression grammar10

exp → exp + exp ∣ exp − exp ∣ exp ∗ exp ∣ ( exp ) ∣ n

Evaluation: Attribute grammar and attributed tree

A-grammar

Attributed tree

Expressions: generating ASTs

Expression grammar with precedences & assoc.
exp → exp + term ∣ exp − term ∣ term

term → term ∗ factor ∣ factor
factor → ( exp ) ∣ n

Attributes (just synthesized)

exp, term, factor tree
n lexval

10Alternatively: It’s meant as grammar describing nice and clean ASTs for an underlying, potentially less
nice grammar used for parsing.
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Expressions: Attribute grammar and attributed tree

A-grammar

A-tree
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The AST looks a bit bloated. That’s because the grammar was massaged in such a way that prece-
dences and associativities during parsing are dealt with properly. The the grammar is describing
more a parse tree rather than an AST, which often would be less verbose. But the AG formalisms
itself does not care about what the grammar describes (a grammar used for parsing or a grammar
describing the abstract syntax), it does especially not care if the grammar is ambiguous.

Example: type declarations for variable lists

CFG

decl → type var-list
type → int
type → float

var-list1 → id, var-list2
var-list → id

• Goal: attribute type information to the syntax tree
• attribute: dtype (with values integer and real)11

• complication: “top-down” information flow: type declared for a list of vars ⇒ inherited to
the elements of the list

Types and variable lists: inherited attributes

grammar productions semantic rules
decl → type var-list var-list .dtype = type .dtype
type → int type .dtype = integer
type → float type .dtype = real

var-list1 → id, var-list2 id.dtype = var-list1 .dtype
var-list2 .dtype = var-list1 .dtype

var-list → id id.dtype = var-list .dtype

• inherited: attribute for id and var-list
• but also synthesized use of attribute dtype: for type .dtype12

The dependencies are (especially for the variable lists) in such a way that the attribute of a later
element depends on an ealier; in other words, the type information propagates from left to right
through the “list”. Seen as a tree, that means, the information propagates top-down in the tree.
That can be seen in the next (quite small) example: the type information (there float) propagates
down the right-branch of the tree, which corresponds to the list of two variables x and y.

Types & var lists: after evaluating the semantic rules

float id(x),id(y)
11There are thus 2 different attribute values. We don’t mean “the attribute dtype has integer values”, like

0,1,2, . . .
12Actually, it’s conceptually better not to think of it as “the attribute dtype”, it’s better as “the attribute

dtype of non-terminal type” (written type .dtype) etc. Note further: type .dtype is not yet what we
called instance of an attribute.
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Attributed parse tree

Dependence graph

Example: Based numbers (octal & decimal)

• remember: grammar for numbers (in decimal notation)
• evaluation: synthesized attributes
• now: generalization to numbers with decimal and octal notation
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CFG

based-num → num base-char
base-char → o
base-char → d

num → num digit
num → digit
digit → 0
digit → 1

. . .
digit → 7
digit → 8
digit → 9

Based numbers: attributes

Attributes

• based-num .val: synthesized
• base-char .base: synthesized
• for num:

– num .val: synthesized
– num .base: inherited

• digit .val: synthesized

• 9 is not an octal character⇒ attribute val may get value “error”!
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Based numbers: a-grammar

The attribute grammar should rather be straightforward and the next slides will shed light on
the dependencies and the evaluation. That illustrates the synthesized vs. the inherited parts
perhaps more clearly than the equations of the semantic rules. As mentioned in the slides: the
evaluation can lead to errors insofar that for base-8 numbers, the characters 8 and 9 are not
allowed. Technically, to be a proper attribute grammar, a value need to be attached to each
attribute instance for each tree. If we would take that serious, it required that we had to give
back an “error” value, as can be seen in the code of the semantic rules. If we take that even more
seriously, it would mean that the “type” of the val attribute is not just integers, but integers or
an error value.

In a practical implementation, one would probably rather operate with exceptions, to achieve
the same. Technically, an exception is not a ordinary value which is given back, but interrupts
the standard control-flow as well. That kind of programming convenience is outside the (purely
functional/equational) framework of AGs, and therefore, the given semantic rules deal the extra
error value explicitly and evaluation propagate errors explicitly; since the errors occur during
the “calculation phase”, i.e., when dealing with the synthesized attribute, an error is propagated
upwards the tree.



210 5 Semantic analysis
5.2 Attribute grammars

Based numbers: after eval of the semantic rules

Attributed syntax tree

Based nums: Dependence graph & possible evaluation order
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Dependence graph & evaluation

• evaluation order must respect the edges in the dependence graph
• cycles must be avoided!
• directed acyclic graph (DAG)
• dependence graph ∼ partial order
• topological sorting: turning a partial order to a total/linear order (which is consistent with

the PO)
• roots in the dependence graph (not the root of the syntax tree): their values must come

“from outside” (or constant)
• often (and sometimes required): terminals in the syntax tree:

– terminals synthesized / not inherited⇒ terminals: roots of dependence graph⇒ get their value from the parser (token value)

A DAG is not a tree, but a generalization thereof. It may have more than one “root” (like a forest).
Also: “shared descendents” are allowed. But no cycles.

As for the treatment of terminals, resp. restrictions some books require: An alternative view is
that terminals get token values “from outside”, the lexer. They are as if they were synthesized,
except that it comes “from outside” the grammar.

Evaluation: parse tree method

For acyclic dependence graphs: possible “naive” approach

Parse tree method

Linearize the given partial order into a total order (topological sorting), and then simply evaluate
the equations following that.

Rest

• works only if all dependence graphs of the AG are acyclic
• acyclicity of the dependence graphs?
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– decidable for given AG, but computationally expensive13

– don’t use general AGs but: restrict yourself to subclasses

• disadvantage of parse tree method: also not very efficient check per parse tree

Observation on the example: Is evalution (uniquely) possible?

• all attributes: either inherited or synthesized14

• all attributes: must actually be defined (by some rule)
• guaranteed in that for every production:

– all synthesized attributes (on the left) are defined
– all inherited attributes (on the right) are defined
– local loops forbidden

• since all attributes are either inherited or synthesized: each attribute in any parse tree:
defined, and defined only one time (i.e., uniquely defined)

Loops

• loops intolerable for evaluation
• difficult to check (exponential complexity).15

Variable lists (repeated)

Attributed parse tree

13On the other hand: the check needs to be done only once.
14base-char .base (synthesized) considered different from num .base (inherited)
15acyclicity checking for a given dependence graph: not so hard (e.g., using topological sorting). Here: for

all syntax trees.
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Dependence graph

Typing for variable lists

• code assume: tree given

The assumption that the tree is given is reasonable, if dealing with ASTs. For parse-tree, the
attribution of types must deal with the fact that the parse tree is being built during parsing. It
also means: it “blurs” typically the border between context-free and context-sensitive analysis.
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L-attributed grammars

• goal: AG suitable for “on-the-fly” attribution
• all parsing works left-to-right.

L-attributed grammar

An attribute grammar for attributes a1, . . . ,ak is L-attributed, if for each inherited attribute aj

and each grammar rule

X0 →X1X2 . . .Xn ,

the associated equations for aj are all of the form

Xi.aj = fij(X0.a⃗,X1.a⃗ . . .Xi−1.a⃗) .
where additionally for X0.a⃗, only inherited attributes are allowed.

Rest

• X.a⃗: short-hand for X.a1 . . .X.ak

• Note S-attributed grammar ⇒ L-attributed grammar

Nowadays, doing it on-the-fly is perhaps not the most important design criterion.

“Attribution” and LR-parsing

• easy (and typical) case: synthesized attributes
• for inherited attributes

– not quite so easy
– perhaps better: not “on-the-fly”, i.e.,
– better postponed for later phase, when AST available.

• implementation: additional value stack for synthesized attributes, maintained “besides” the
parse stack
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Example: value stack for synth. attributes

Sample action

E : E + E { $$ = $1 + $3 ; }

in (classic) yacc notation

Value stack manipulation: that’s what’s going on behind the scene

5.3 Signed binary numbers (SBN)

SBN grammar

number → sign list
sign → + ∣ −

list → list bit ∣ bit
bit → 0 ∣ 1
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Intended attributes

symbol attributes
number value
sign negative
list position,value
bit position,value

• here: attributes for non-terminals (in general: terminals can also be included)

5.4 Attribute grammar SBN

production attribution rules
1 number → sign list list.position = 0

if sign .negative
then number .value = −LIST.value
else number .value = LIST.value

2 sign → + sign .negative = false
3 sign → − sign .negative = true
4 list → bit bit .position = list.position

list.value = bit .value
5 list0 → list1 bit list1.position = list0.position + 1

bit .position = list0.position
list0.position = list1.value + bit .value

6 bit → 0 bit .value = 0
7 bit → 1 bit .value = 2bit .position
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Symbol tables
Chapter

What
is it

about?
Learning Targets of this Chapter
1. symbol table data structure
2. design and implementation choices
3. how to deal with scopes
4. connection to attribute grammars

Contents

6.1 Introduction . . . . . . . . . . 217
6.2 Symbol table design and in-

terface . . . . . . . . . . . . . 218
6.3 Implementing symbol tables 219
6.4 Block-structure, scoping,

binding, name-space organi-
zation . . . . . . . . . . . . . . 225

6.5 Symbol tables as attributes
in an AG . . . . . . . . . . . . 231

6.1 Introduction

Symbol tables, in general

• central data structure
• “data base” or repository associating properties with “names” (identifiers, symbols)1

• declarations
– constants
– type declarationss
– variable declarations
– procedure declarations
– class declarations
– . . .

• declaring occurrences vs. use occurrences of names (e.g. variables)

• goal: associate attributes (properties) to syntactic elements (names/symbols)
• storing once calculated: (costs memory) ↔ recalculating on demand (costs time)
• most often: storing preferred
• but: can’t one store it in the nodes of the AST?

– remember: attribute grammar
– however, fancy attribute grammars with many rules and complex synthesized/inherited

attribute (whose evaluation traverses up and down and across the tree):
∗ might be intransparent
∗ storing info in the tree: might not be efficient⇒ central repository (= symbol table) better

1Remember the (general) notion of “attribute”.
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So: do I need a symbol table?

In theory, alternatives exists; in practice, yes, symbol tables is the way to go; most compilers do
use symbol tables.

Most often (and in our course), the symbol table is set up once, containing all the symbols that
occur in a given program, and then, the semantic analyses (type checking, etc.) update the table
accordingly. Implicit in that is that the symbol table is “static” (i.e., part of the static phase of
the compiler). There are also some languages, which allow “manipulation” of symbol tables at run
time (Racket is one (formally PLT scheme)).

In the slides, a point was made that basically every compiler has a symbol table (or even more than
one). You find statements in the internet that symbol tables are not needed or even to be avoided.
For instance, the stack overflow wisdom “no symbol tables in Go” claims that there are no symbol
tables in Go (and in functional languages). It’s not clear how reliable that information is, because
here’s a link https://golang.org/pkg/debug/gosym/ to the official go implementation,
referring to symbol tables.

6.2 Symbol table design and interface

Symbol table as abstract data type

• separate interface from implementation
• ST: “nothing else” than a lookup-table or dictionary
• associating “keys” with “values”
• here: keys = names (id’s, symbols), values the attribute(s)

Schematic interface: two core functions (+ more)

• insert: add new binding
• lookup: retrieve

besides the core functionality:

• structure of (different?) name spaces in the implemented language, scoping rules
• typically: not one single “flat” namespace ⇒ typically not one big flat look-up table⇒ influence on the design/interface of the ST (and indirectly the choice of implementation)
• necessary to “delete” or “hide” information (delete)

A symbol table is, typically, not just a “flat” dictionary, neither conceptually nor the way it’s
implemented. Scoping typically is something that often complicates the design of the symbol
table.

It should also be clear from the context of discussion: when we speak of the value of an attribute we
typically don’t mean the semantic value of the symbol, like the integer value of an expression. The
value of an attribute is meant in the “meta”-way, the value that the analysis attaches to the entity,
for instance its type, its address, etc. (and only in rather rare cases, its programming language
level value). The situation is the same as for attribute grammars and indeed, symbol tables can
be seen as a data structure realizing “attributes”. See also the next slide, contrasting two ways of
attaching “attributes” to entities in a (syntax) tree: “internal”, as part of the nodes, or external,
in a separate repository (known as symbol table).

https://racket-lang.org/
https://stackoverflow.com/questions/1725975/no-symbol-table-in-go
https://golang.org/pkg/debug/gosym/
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Two main philosophies

traditional table(s)

• central repository, separate from AST
• interface

– lookup(name),
– insert(name,decl),
– delete(name)

• last 2: update ST for declarations and when entering/exiting blocks

decls. in the AST nodes

• do look-up ⇒ tree-search
• insert/delete: implicit, depending on relative positioning in the tree
• look-up:

– efficiency?
– however: optimizations exist, e.g. “redundant” extra table (similar to the traditional

ST)

Here, for concreteness, declarations are the attributes stored in the ST. In general, it is not the
only possible stored attribute. Also, there may be more than one ST.

Language often have different “name spaces”. Even a relatively old-school language like C has 4
different name spaces for identifiers. There are different kinds of identifiers, and different rules (for
instance wrt. scoping) apply to them. One way to arrange them could be to have different symbol
tables, one specially for each name space. Later we will have also situation (but not caused by
different kinds of identifiers), where the symbol table is arrange in a way that smaller symbol tables
(per scope) are linked together where a symbol table of a “surrounding” scope points to a symbol
table representing a scope nested deeper. One might see that as having “many” symbol tables,
but maybe that’s misleading. It’s more an internal representation which a linked structure, but
that data structure containing many individiual table is better seen conceptually as one symbol
table (the symbol table of the language) but a complex behavior reflecting the lexical scoping of
the language. Actually, whether or not one implments it in chaining up a bunch of individual hash
table or similar structure or doing a different representation is a design choice one can make, both
realizing the same external at the interface. In that spirit, also the remark that C has 4 different
name spaces (which is true) and therefore maybe 4 symbol tables is a matter of how one seens
(and implements) it: one may as well see and implement it as one symbol table (with 4 kinds of
identifiers which are treated differently).

A cautionary note: You may find the statement that C (being old fashioned) does not feature name
spaces. The discussion here was about the internal organization and scoping rules for identifers
in C, which form internally 4 different name spaces. But C does not have elabore user-level
mechanisms to introduce name spaces; therefore, one may stumble upon statements like “C does
not support name spaces”. . .

6.3 Implementing symbol tables

Data structures to implement a symbol table

• different ways to implement dictionaries (or look-up tables etc.)
– simple (association) lists
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– trees
∗ balanced (AVL, B, red-black, binary-search trees)

– hash tables, often method of choice
– functional vs. imperative implementation

• careful choice influences efficiency
• influenced also by the language being implemented
• in particular, by its scoping rules (or the structure of the name space in general) etc.2

Nested block / lexical scope

for instance: C

{ int i ; . . . ; double d ;
void p ( . . . ) ;
{

int i ;
. . .

}
int j ;
. . .

more later

Blocks in other languages

TEX

\def\x{a}
{

\def\x{b}
\x

}
\x
\bye

LATEX

\documentclass { a r t i c l e }
\newcommand{\x}{a}
\begin{document}
\x
{\renewcommand{\x}{b}

\x
}
\x
\end{document}

But: static vs. dynamic binding (see later)

LATEX and TEX are chosen for easy trying out the result oneself (assuming that most people have
access to LATEX and by implication, TEX). TEX is the underlying “core” on which LATEX is put on

2Also the language used for implementation (and the availability of libraries therein) may play a role (but
remember “bootstrapping”)
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top. There are other formats in top of TEX (texi is another one; texi is involved, for instance,
type setting the pdf version of the Compila language specification)

Hash tables

• classical and common implementation for STs
• “hash table”:

– generic term itself, different general forms of HTs exists
– e.g. separate chaining vs. open addressing

There exists alternative terminology (cf. INF2220 in the older numbering scheme, it’s the algo &
data structures lecture), under which separate chaining is also known as open hashing. The open
addressing methods are also called closed hashing. It’s confusing, but that’s how it is, and it’s just
words.

Separate chaining

Code snippet

{
int temp ;
int j ;
real i ;
void s i z e ( . . . . ) {

{
. . . .

}
}

}

Block structures in programming languages

• almost no language has one global namespace (at least not for variables)
• pretty old concept, seriously started with ALGOL60

Block

• “region” in the program code
• delimited often by { and } or BEGIN and END or similar
• organizes the scope of declarations (i.e., the name space)
• can be nested
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Block-structured scopes (in C)

int i , j ;

int f ( int s i z e )
{ char i , temp ;

. . .
{ double j ;

. .
}
. . .
{ char ∗ j ;

. . .
}

}

Nested procedures in Pascal

program Ex ;
var i , j : integer

function f ( s i z e : integer ) : integer ;
var i , temp : char ;

procedure g ;
var j : real ;
begin

. . .
end ;
procedure h ;
var j : ^char ;
begin

. . .
end ;

begin (∗ f ' s body ∗)
. . .

end ;
begin (∗ main program ∗)

. . .
end .

The Pascal-example shows a feature of Pascal, which is not supported by C, namely nested decla-
rations of functions or procedures. As far as scoping and the discussion in the lecture is concerned,
that’s not a big issue: just that concerning names for variables, C and Pascal allow nested blocks,
but for names representing functions or procedures, Pascal offers more freedom.

Block-strucured via stack-organized separate chaining

C code snippet

int i , j ;

int f ( int s i z e )
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{ char i , temp ;
. . .
{ double j ;

. .
}
. . .
{ char ∗ j ;

. . .
}

}

“Evolution” of the hash table

The 3 pictures (shown on the right-hand side of the slide version) correpond to three “points”
inside the C program. The first one after entering the scope of function f. Inside the body of the
function (immediately after entering), the two local variables are available, and of course also the
formal parameter temp, which can be seen as a local variable, as well. At that point, the global
variable i of type int is no longer “visible” or accessible, any reference to i will refer to the local
variable i at that point.
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Upon entering the first nested local scope, a second variable j is entered (making the global variable
j unaccessible). That situation is not shown in the pictures. New, when leaving the mentioned
scope, one way of dealing with the situation is that the additional second j of type double is
removed from the hash-table again (shortering the corresponding linked chain). What is shown is
a situation inside the second nested scope with another variable j (now a char pointer). Since the
first nested local scope has been left at that point, the corresponding j “has become history”, and
the hash table of the third picture only contains the global j variable (which is unaccessible) and
the now relevant second local j variable.

Using the syntax tree for lookup following (static links)

lookup ( string n) {
k = current , surrounding block
do // search for n in dec l for block k ;

k = k . s l // one ne s t i ng l e v e l up
until found or k == none

}

The notion of static link will be discussed later, in connection with the so-called run-time system
and the run-time stack. There we go into more details, but the idea is the same as here: find a
way to “locate” the relevant scope. If they are nested, connect them via some “parent pointer”,
and that pointer is known as static links (again, different names exists for that, unfortunately).

Alternative representation:

• arrangement different from 1 table with stack-organized external chaining
• each block with its own hash table.
• standard hashing within each block
• static links to link the block levels⇒ “tree-of-hashtables”
• AKA: sheaf-of-tables or chained symbol tables representation
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Note that the top-most scope is at the right-hand side of the table, and the static-link always
points to the (uniquely determined) surrounding scope.

One may more generally say: one symbol table per block, as this form of organization can generally
be done for symbol tables data structures (where hash tables is just one of many possible data
structure to implement look-up tables).

6.4 Block-structure, scoping, binding, name-space organization

Block-structured scoping with chained symbol tables

• remember the interface
• look-up: following the static link (as seen)3

• Enter a block
– create new (empty) symbol table
– set static link from there to the “old” (= previously current) one
– set the current block to the newly created one

• at exit
– move the current block one level up
– note: no deletion of bindings, just made inaccessible

Lexical scoping & beyond

• block-structured lexical scoping: central in programming languages (ever since ALGOL60
. . . )

• but: other scoping mechanism exists (and exist side-by-side)
• example: C++

– member functions declared inside a class
– defined outside

• still: method supposed to be able to access names defined in the scope of the class definition
(i.e., other members, e.g. using this)

C++ class and member function

class A {
. . . int f ( ) ; . . . // member func t i on

}

A : : f ( ) {} // de f . o f f `` in ' ' A

3The notion of static links will be encountered later again when dealing with run-time environments (and
for analogous purposes: identfying scopes in “block-stuctured” languages).
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Java analogon

class A {
int f ( ) { . . . } ;
boolean b ;
void h ( ) { . . . } ;

}

Scope resolution in C++
• class name introduces a name for the scope4 (not only in C++)
• scope resolution operator ::
• allows to explicitly refer to a “scope”’

• to implement
– such flexibility,
– also for remote access like a.f()

• declarations must be kept separately for each block (e.g. one hash table per class, record,
etc., appropriately chained up)

Same-level declarations

Same level

typedef int i
int i ;

• often forbidden (e.g. in C)
• insert: requires check (= lookup) first

Sequential vs. “collateral” declarations

1. Sequential in C

int i = 1 ;
void f (void )

{ int i = 2 , j = i +1,
. . .

}

4Besides that, class names themselves are subject to scoping themselves, of course . . .
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2. Collateral in ocaml/ML/Lisp

let i = 1 ; ;
let i = 2 and y = i +1; ;

pr int_int ( y ) ; ;

I think the name “collateral” is unfortunate. A better word, in my eyes, would be simultaneous
(or parallel).

Recursive declarations/definitions

• for instance for functions/procedures
• also classes and their members

Direct recursion

int gcd ( int n , int m) {
i f (m == 0) return n ;
else return gcd (m, n % m) ;

}

Indirect recursion/mutual recursive def’s

void f (void ) {
. . . g ( ) . . . }

void g (void ) {
. . . f ( ) . . . }

Before treating the body, parser must add gcd into the symbol table (similar for the other exam-
ple).

Mutual recursive definitions

void g (void ) ; /∗ f unc t i on pro to type d e c l . ∗/

void f (void ) {
. . . g ( ) . . . }

void g (void ) {
. . . f ( ) . . . }

• different solutions possible
• Pascal: forward declarations
• or: treat all function definitions (within a block or similar) as mutually recursive
• or: special grouping syntax
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Example syntax-es for mutual recursion

ocaml

let rec f ( x : i n t ) : i n t =
g (x+1)

and g (x : i n t ) : i n t =
f (x+1) ; ;

Go

func f ( x int ) ( int ) {
return g (x ) +1

}

func g (x int ) ( int ) {
return f ( x ) −1

}

Static vs dynamic scope

• concentration so far on:
– lexical scoping/block structure, static binding
– some minor complications/adaptations (recursion, duplicate declarations, . . . )

• big variation: dynamic binding / dynamic scope
• for variables: static binding/ lexical scoping the norm
• however: cf. late-bound methods in OO

Static scoping in C

Code snippet

#include <s td i o . h>

int i = 1 ;
void f (void ) {

p r i n t f ( "%d\n" , i ) ;
}

void main (void ) {
int i = 2 ;
f ( ) ;
return 0 ;

}

which value of i is printed then?
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Dynamic binding example

1 void Y () {
2 int i ;
3 void P( ) {
4 int i ;
5 . . . ;
6 Q( ) ;
7 }
8 void Q(){
9 . . . ;

10 i = 5 ; // which i i s meant?
11 }
12 . . . ;
13
14 P( ) ;
15 . . . ;
16 }

for dynamic binding: the one from line 4

Static or dynamic?

TEX

\def\ a s t r i n g {a1}
\def\x{\ a s t r i n g }
\x
{

\def\ a s t r i n g {a2}
\x

}
\x
\bye

LATEX

\documentclass { a r t i c l e }
\newcommand{\ a s t r i n g }{a1}
\newcommand{\x}{\ a s t r i n g }
\begin{document}
\x
{

\renewcommand{\ a s t r i n g }{a2}
\x

}
\x
\end{document}

emacs lisp (not Scheme)

( s e tq a s t r i n g " a1 " ) ; ; ``assignment ' '
(defun x ( ) a s t r i n g ) ; ; d e f i n e `` v a r i a b l e x ' '
( x ) ; ; read va lue
( let ( ( a s t r i n g " a2 " ) )

( x ) )
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Again, it’s very easy to check by invoking TEX or LATEX, or firing off emacs and evaluate the lisp
snippet in a buffer, for instance.

Code first

package main
import ( " fmt " )

var f = func ( ) {
var x = 0
var g = func ( ) { fmt . P r i n t f ( " x = %v" , x )}
x = x + 1

{
var x = 40 // l o c a l v a r i a b l e
g ( )
fmt . P r i n t f ( " x = %v" , x )}

}
func main ( ) {

f ( )
}

Static binding is not about “value”

• the “static” in static binding is about
– binding to the declaration / memory location,
– not about the value

• nested functions used in the example (Go)
• g declared inside f

package main
import ( " fmt " )

var f = func ( ) {
var x = 0
var g = func ( ) { fmt . P r i n t f ( " x = %v" , x )}
x = x + 1

{
var x = 40 // l o c a l v a r i a b l e
g ( )
fmt . P r i n t f ( " x = %v" , x )}

}
func main ( ) {

f ( )
}

Static binding can become tricky

package main
import ( " fmt " )

var f = func ( ) ( func ( int ) int ) {
var x = 40 // l o c a l v a r i a b l e
var g = func ( y int ) int { // nes ted func t i on

return x + 1
}
x = x+1 // update x
return g // func t ion as re turn va lue
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}

func main ( ) {
var x = 0
var h = f ( )
fmt . Pr in t ln (x )
var r = h (1)
fmt . P r i n t f ( " r = %v" , r )

}

• example uses higher-order functions

As said, the example uses higher-order functions. In particular, the function f gives back some
function, namely the function g, and not only that: function g is defined inside f, in particular,
g is defined inside the scope of f. And finally, the nested function g refers to x, which is also
defined inside f. Now the problem is that the scope of f lives longer than the body of f itself.
We come to that problem also later, when dealing with run-time environment. In many languages,
one important part of the RTE is the run-time stack, or call stack. It turns out, that in situations
like the ones illustrated here, a stack is no longer good enough for providing lexical scoping.

6.5 Symbol tables as attributes in an AG

Nested lets in ocaml

let x = 2 and y = 3 in
( let x = x+2 and y =

( let z = 4 in x+y+z )
in pr int_int (x+y ) )

• simple grammar (using , for “collateral” = simultaneous declarations)

S → exp
exp → ( exp ) ∣ exp + exp ∣ id ∣ num ∣ let dec - list in exp

dec - list → dec - list , decl ∣ decl
decl → id= exp

1. no identical names in the same let-block
2. used names must be declared
3. most-closely nested binding counts
4. sequential (non-simultaneous) declaration (/= ocaml/ML/Haskell . . . )

let x = 2 , x = 3 in x + 1 (∗ no , d u p l i c a t e ∗)

let x = 2 in x+y (∗ no , y unbound ∗)

let x = 2 in ( let x = 3 in x ) (∗ d e c l . wi th 3 counts ∗)

let x = 2 , y = x+1 (∗ one a f t e r the o ther ∗)
in ( let x = x+y ,

y = x+y
in y )
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Goal

Design an attribute grammar (using a symbol table) specifying those rules. Focus on: error at-
tribute.

Attributes and ST interface

symbol attributes kind
exp symtab inherited

nestlevel inherited
err synthesis

dec - list,decl intab inherited
outtab synthesized
nestlevel inherited

id name injected by scanner

Symbol table functions

• insert(tab,name,lev): returns a new table
• isin(tab,name): boolean check
• lookup(tab,name): gives back level
• emptytable: you have to start somewhere
• errtab: error from declaration (but not stored as attribute)

As for the information stored and especially for the look-up function: Realistically, more info would
be stored, as well, for instance types etc.

Attribute grammar (1): expressions
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• note: expressions in let’s can introduce scopes themselves!
• interpretation of nesting level: expressions vs. declarations5

Attribute grammar (2): declarations

Final remarks concerning symbol tables

• strings as symbols i.e., as keys in the ST: might be improved
• name spaces can get complex in modern languages,
• more than one “hierarchy”

– lexical blocks
– inheritance or similar
– (nested) modules

• not all bindings (of course) can be solved at compile time: dynamic binding
• can e.g. variables and types have same name (and still be distinguished)
• overloading (see next slide)

Final remarks: name resolution via overloading

• corresponds to “in abuse of notation” in textbooks
• disambiguation not by name, but differently especially by “argument types” etc.
• variants :

– method or function overloading
– operator overloading
– user defined?

5I would not have recommended doing it like that (though it works)
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i + j // i n t e g e r a d d i t i o n
r + s // rea l −a d d i t i o n

void f ( int i )
void f ( int i , int j )
void f (double r )
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Types and type checking
Chapter

What
is it

about?
Learning Targets of this Chapter
1. the concept of types
2. specific common types
3. type safety
4. type checking
5. polymorphism, subtyping and other

complications

Contents

7.1 Introduction . . . . . . . . . . 235
7.2 Various types and their rep-

resentation . . . . . . . . . . . 238
7.3 Equality of types . . . . . . . 248
7.4 Type checking . . . . . . . . . 254

7.1 Introduction

This chapter deals with “types”. Since the material is presented as part of the static analysis (or
semantic analysis) phase of the compiler, we are dealing mostly with static aspects of types (i.e.,
static typing).

The notion of “type” is very broad and has many different aspects. The study of “types” is a
research field in itself (“type theory”). In some way, types and type checking is the very essence
of semantic analysis, insofar that types can be very “expressive” and can be used to represent
vastly many different aspects of the behavior of a program. By “more expressive” I mean types
that express much more complex properties or attributes than the ones standard programmers are
familiar with: booleans, integers, structured types, etc. When increasing the “expressivity”, types
might not only capture more complex situations (like types for higher-order functions), but also
unusual aspects, not normally connected with types, like for instance: bounds on memory usage,
guarantees of termination, assertions about secure information flow (like no information leakage),
and many more.

As a final random example: a language like Rust is known for its non-standard form of memory
management based on the notion of ownership to a piece of data. Ownership tells who has the right
to access the data when and how, and that’s important to know as as simultaneous write access
leads to trouble. Regulating ownership can and has been formulated by corresponding “ownership
type systems” where the type expresses properties concerning ownership.

That should give a feeling that, with the notion of types such general, the situation is a bit as
with “attributes” and attribute grammars: “everything” may be an attribute since an attribute
is nothing else than a “property”. The same holds for types. With a loose interpretation like
that, types may represent basically all kinds of concepts: like, when interested in property “A”,
let’s intoduce the notion of “A”-types (with “A” standing for memory consumption, ownership, and
what not). But still: studying type systems and their expressivity and application to programming
languages seems a much broader and deeper (and more practical) field than the study of attribute
grammars. By more practical, I mean: while attribute grammars certainly have useful applications,

https://en.wikipedia.org/wiki/Type_theory
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stretching them to new “non-standard” applications may be possible, but it’s, well, stretching it.1
Type systems, on the other hand, span more easily form very simple and practical usages to very
expressive and foundational logical system.

In this lecture, we keep it more grounded and mostly deal with concrete, standard (i.e., not very
esoteric) types. Simple or “complicated” types, there are at least two aspects of a type. One is,
what a user or programmer sees or is exposed to. The second one is the inside view of the compiler
writer. The user may be informed that it’s allowed to write x + y where x and y are both integers
(carrying the type int), or both strings, in which case + represents string addition. Or perhaps
the language even allows that one variable contains a string and the other an integer, in which
case the + is still string concatenation, where the integer valued operand has to be converted to
its string representation. The compiler writer needs then to find representations in memory for
those data types (ultimately in binary form) that actually realize the operations described above
on an abstract level. That means choosing an appropriate encoding, choosing the right amount of
memory (long ints need more space than short ints, etc, perhaps even depending on the platform),
and making sure that needed conversions (like from integers to string) actually are done in the
compiled code (most likely arranged statically). Of course, the programmer does not want to know
those details, he typically could not care less, for instance, whether the machine architecture is
“little-endian” or “big-endian” (see https://en.wikipedia.org/wiki/Endianness). But
the compiler writer will have to care when writing the compiler itself to represent or encode what
the programmer calls “an integer” or “a string”. So, apart from the more esoteric and advanced roles
types play in programming languages, perhaps the most fundamental role is that of abstraction:
to shield the programmer from the dirty details of the actual representation.

Types are a central abstraction for programmers.

Abstraction in the sense of hiding underlying representional details.2

The lecture will have some look at both aspects of type systems. One is the representational
aspect. That one is more felt in languages like C, which is closer to the operating system and
to memory in hardware than languages that came later. Besides that, we will also more look at
type system as specification of what is allowed at the programmer’s level (“is it allowed to do a +
on an a value of integer type and of string type?”), i.e., how to specify a type system in a
programming language independent from the question how to choose proper lower-level encodings
that the abstraction specified in the type system.

General remarks and overview

• Goal here:
– what are types?
– static vs. dynamic typing
– how to describe types syntactically?
– how to represent and use types in a compiler?

• coverage of various types
– basic types (often predefined/built-in)
– type constructors

1That’s at least my slightly biased opinion.
2Beside that practical representational aspect, types are also an abstraction in the sense that they can
be viewed as the “set” of all the values of that given type. Like int represents the set of all integers.
Both views are consistent as all members of the “set” int are consistently represented in memory and
consistently treated by functions operating on them. That “consistency” allows us as programmers
to think of them as integers, and forget about details of their representation, and it’s the task of
the compiler writer, to reconcile those two views: the low-level encoding must maintain the high-level
abstraction.

https://en.wikipedia.org/wiki/Endianness
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– values of a type
– type operators
– representation at run-time
– run-time tests and special problems (array, union, record, pointers)

• specification and implementation of type systems/type checkers
• advanced concepts

Why types?

• crucial, user-visible abstraction describing program behavior
• one view: type describes a set of (mostly related) values
• static typing: checking/enforcing a type discipline at compile time
• dynamic typing: same at run-time, mixtures possible
• completely untyped languages: very rare, types were part of PLs from the start.

Milner’s dictum (“type safety”)

Well-typed programs cannot go wrong!

• strong typing:3 rigorously prevent “misuse” of data
• types useful for later phases and optimizations
• documentation and partial specification

In contrast to (standard) types: many other abstractions in SA (like the control-flow graph or data
flow analysis and others) are not directly visible in the source code. However, in the light of the
introductory remarks that “types” can capture a very broad spektrum of semantic properties of
a language if one just makes the notion of type general enough (“ownership”, “memory consump-
tion”), it should come as no surprise that one can capture data flow in appropriately complex type
systems, as well. . .

Besides that: there are not really any truly untyped languages around, there is always some
discipline (beyond syntax) on what a programmer is allowed to do and what not. Probably the
anarchistic recipe of “anything (syntactically correct) goes” tends to lead to disaster. Note that
“dynamically typed” or “weakly typed” is not the same as “untyped”.

Types: in first approximation

Conceptually

• semantic view: set of values plus a set of corresponding operations
• syntactic view: notation to construct basic elements of the type (its values) plus “procedures”

operating on them
• compiler implementor’s view: data of the same type have same underlying memory repre-

sentation

further classification:

• built-in/predefined vs. user-defined types
• basic/base/elementary/primitive types vs. compound types
• type constructors: building more compex types from simpler ones
• reference vs. value types

3Terminology rather fuzzy, and perhaps changed a bit over time.
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7.2 Various types and their representation

Some typical base types

base types
int 0, 1, . . . +,−,∗, / integers
real 5.05E4 . . . +,-,* real numbers
bool true, false and or (|) . . . booleans
char ’a’ characters⋮
• often HW support for some of those (including some of the op’s)
• mostly: elements of int are not exactly mathematical integers, same for real
• often variations offered: int32, int64
• often implicit conversions and relations between basic types

– which the type system has to specify/check for legality
– which the compiler has to implement

Some compound types

compound types
array[0..9] of real a[i+1]
list [], [1;2;3] concat
string "text" concat . . .
struct / record r.x
. . .

• mostly reference types
• when built in, special “easy syntax” (same for basic built-in types)

– 4 + 5 as opposed to plus(4,5)
– a[6] as opposed to array_access(a, 6) . . .

• parser/lexer aware of built-in types/operators (special precedences, associativity, etc.)
• cf. functionality “built-in/predefined” via libraries

Being a “conceptual” view means, it’s about the “interface”, it’s an abstract view of how one can
make use of members of a type. It not about implementation details, like “integers are 2 byte
words in such-and-such representation”. See also the notion of abstract data type on the next
slide.

Abstract data types

• unit of data together with functions/procedures/operations . . . operating on them
• encapsulation + interface
• often: separation between exported and internal operations

– for instance public, private . . .
– or via separate interfaces

• (static) classes in Java: may be used/seen as ADTs, methods are then the “operations”
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ADT begin
integer i ;
real x ;
int proc t o t a l ( int a ) {

return i ∗ x + a // or : `` t o t a l = i ∗ x + a ' '
}

end

Type constructors: building new types

• array type
• record type (also known as struct-types)
• union type
• pair/tuple type
• pointer type

– explict as in C
– implict distinction between reference and value types, hidden from programmers (e.g.

Java)
• signatures (specifying methods / procedures / subroutines / functions) as type
• function type constructor, incl. higher-order types (in functional languages)
• (names of) classes and subclasses
• . . .

Basically all languages support to build more complex types from the basic one and ways to use
and check them. Sometimes it’s not even very visible, for instance, one may already see strings as
compound. For instance in C, which takes a very implementation-centric view on types, explains
strings as

one-dimensional array of characters terminated by a null character ’/0’
Of course, there is special syntax to build values of type string, writing "abc" as opposed to
string-cons(’a, string_cons(’b, ...)) or similar. . . This smooth support of working
with strings may make them feel as if being primitive.

In the following we will have a look at a few of composed types in programming languages. The
Compila language of this year’s oblig supports records but also “names” of records. We will also
discuss the issue of “types as such” vs. “names of types” later (for instance in connection with
the question how to “compare types: when are they equal or compatible, what about subtping?
etc.).

Arrays

Array type

array [< indextype >] of <component type>

• elements (arrays) = (finite) functions from index-type to component type
• allowed index-types:

– non-negative (unsigned) integers?, from ... to ...?
– other types?: enumerated types, characters

• things to keep in mind:
– indexing outside the array bounds?
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– are the array bounds (statically) known to the compiler?
– dynamic arrays (extensible at run-time)?

Integer-indexed arrays are typically a very efficent data structure, as they mirror the layout of
standard random access memory and customary hardware.4 Indeed, contiguous random-access
memory can be seen as one big array of “cells” or “words” and standard hardware supports fast
access to to those cells by indirect addressing modes (like making use of an off-set from a base
address, even offset multiplied by a factor (which represents the size of the entries)). In the later
chapters about code generation, we will look a bit into different addressing modes of machine
instructions.

One and more-dimensional arrays

• one-dimensional: efficiently implementable in standard hardware (relative memory address-
ing, known offset)

• two or more dimensions

array [ 1 . . 4 ] of array [ 1 . . 3 ] of real
array [ 1 . . 4 , 1 . . 3 ] of real

• one can see it as “array of arrays” (Java), an array is typically a reference type
• conceptually “two-dimensional”- linear layout in memory (language dependent)

Records (“structs”)

struct {
r e a l r ;
int i ;

}

• values: “labelled tuples” (real× int)
• constructing elements, e.g.

struct point { int x ; int y ; } ;
struct point pt = { 300 , 42 } ;

struct point

• access (read or update): dot-notation x.i
• implemenation: linear memory layout given by the (types of the) attributes
• attributes accessible by statically fixed offsets
• fast access
• cf. objects as in Java

4There exists unconventional hardware memory architectures which are not accessed via addresses, like
content-addressable memory. Those don’t resemble “arrays”. They are a specialist niche, but have
applications.

https://www.pagiamtzis.com/cam/camintro/
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Structs in C

The following is not too important, just some side remarks on a bit esoteric aspects of structs in
C: The definition, declaration etc. of struct types and structs in C is slightly confusing.
struct Foo { // Foo i s c a l l e d a `` tag ' '

r e a l r ;
int i

The foo is a tag, which is almost like a type, but not quite, at least as far as C is concerned (i.e.
the definition of C distinguishes even it is not so clear why). Technically, for instance, the name
space for tags is different from that for types. Ignoring details, one can make use of the tag almost
as if it were a type, for instance,
struct f oo b

declares the structure b to adhere to the struct type tagged by foo. Since foo is not a proper
type, what is illegal is a declaration such as foo b. In general the question whether one should
use typedef in commbination with struct tags (or only typedef, leaving out the tag), seems a
matter of debate. In general, the separation between tags and types (resp. type names) is a messy,
ill-considered design. One should do better these days.

Tuple/product types

• T1 × T2 (or in ascii T_1 * T_2)
• elements are tuples: for instance: (1, "text") is element of int * string
• generalization to n-tuples:

value type
(1, "text", true) int * string * bool
(1, ("text", true)) int * (string * bool)

• structs can be seen as “labeled tuples”, resp. tuples as “anonymous structs”
• tuple types: common in functional languages,
• in C/Java-like languages: n-ary tuple types often only implicit as input types for proce-

dures/methods (part of the “signature”)

The two “triples” and their types touches upon an issue discussed later, namely when are two
types equal (and related to that, whether or not the corresponding values (here the “triples”) are
equal.

Union types (C-style again)

union {
r e a l r ;
int i

}

• related to sum types (outside C)
• (more or less) represents disjoint union of values of “participating” types
• access in C (confusingly enough): dot-notation u.i
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Union types in C and type safety

• union types is C: bad example for (safe) type disciplines, as it’s simply type-unsafe, basically
an unsafe hack . . .

Union type (in C):

• nothing much more than a directive to allocate enough memory to hold largest member of
the union.

• in example: real takes more space than int

• implementor’s (= low level) focus and memory allocation, not “proper usage focus” or assur-
ing strong typing⇒ bad example of modern use of types

• better (type-safe) implementations known since⇒ variant record (“tagged”/“discriminated” union ) or even inductive data types

Inductive types are basically: union types done right plus possibility of “recursion”. On the next
slide, we discuss variant records from Pascal. They try to remedy the deficiency of C-style records
by adding as additional component some “discriminator”. This possibility for enhanced security
goes only half way, it’s still possible to subvert the type system. Inductive data types also allow
recursive definitions, and can be used for pattern matching, an elegant form of “case-switching”.

Variant records from Pascal

record case i sRea l : boolean of
true : ( r : real ) ;
fa l se : ( i : integer ) ;

• “variant record”
• non-overlapping memory layout5

• programmer responsible to set and check the “discriminator” self
• enforcing type-safety-wise: not really an improvement :-(

record case boolean of
true : ( r : real ) ;
fa l se : ( i : integer ) ;

Inductive types in ML and similar

• type-safe and powerful
• allows pattern matching

I sRea l of r e a l | I s I n t e g e r of i n t

• allows recursive definitions ⇒ inductive data types:
5Again, that’s an implementor-centric view, not a user-centric one.
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type i n t_b int r ee =
Node of i n t ∗ i n t_b int r ee ∗ b in t r e e

| Ni l

• Node, Leaf, IsReal: constructors (cf. languages like Java)
• constructors used as discriminators in “union” types

type exp =
Plus of exp ∗ exp

| Minus of exp ∗ exp
| Number of i n t
| Var of s t r i n g

Recursive data types in C

does not work

struct intBST {
int va l ;
int i sNu l l ;
struct intBST l e f t , r i g h t ;

}

“indirect” recursion

struct intBST {
int va l ;
struct intBST ∗ l e f t , ∗ r i g h t ;

} ;
typedef struct intBST ∗ intBST ;

In Java: references implicit

class BSTnode {
int va l ;
BSTnode l e f t , r i g h t ;

• note: implementation in ML: also uses “pointers” (but hidden from the user)
• no nil-pointers in ML (and NIL is not a nil-pointer, it’s a constructor)

Pointer types

• pointer type: notation in C: int*
• “ * ”: can be seen as type constructor

int∗ p ;

• random other languages: ^integer in Pascal, int ref in ML
• value: address of (or reference/pointer to) values of the underlying type
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• operations: dereferencing and determining the address of an data item (and C allows “ pointer
arithmetic ”)

var a : ^ integer (∗ p o i n t e r to an i n t e g e r ∗)
var b : integer
. . .
a := &i (∗ i an i n t var ∗)

(∗ a := new i n t e g e r ok too ∗)
b:= ^a + b

Implicit dereferencing

• many languages: more or less hide existence of pointers
• cf. reference vs. value types often: automatic/implicit dereferencing

C r ;
C r = new C( ) ;

• “sloppy” speaking: “ r is an object (which is an instance of class C /which is of type C)”,
• slightly more precise: variable “ r contains an object. . . ”
• precise: “variable r will contain a reference to an object”
• r.field corresponds to something like “ (*r).field, similar in Simula

Programming with pointers

• “popular” source of errors
• test for non-null-ness often required
• explicit pointers: can lead to problems in block-structured language (when handled non-

expertly)
• watch out for parameter passing
• aliasing
• null-pointers: “the billion-dollar-mistake”
• take care of concurrency

Null pointer are generally attributed (actually including self-attributed) to Tony Hoare, famous
for many landmark contributions. He himself refers to the introduction of null pointers or null
references (1965 for ALGOL-W) as his billion dollar mistake. See also here, but the video seems no
longer to work, but there is some notes or rudimentary transscript. One can also consult Hoare’s
Turing Award lecture (1980), where he talks about similar topics. Also the text of the lecture
is available on the net. In the lecture, he interestingly mentions as the first and foremost design
principle for the design of ALGOL resp. the corresponding compiler: security. So it’s not that
the intention was to say “to hell with security, speed comes first”. From the text, though, it seems
that he speaks about “security” of the compiler itself, in that it should never crash (= “. . . no
core dumps should ever be nessessary”).

Function variables

https://medium.com/@hinchman_amanda/null-pointer-references-the-billion-dollar-mistake-1e616534d485
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
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program Funcvar ;
var pv : Procedure ( x : integer ) ; (∗ procedur var ∗)

Procedure Q( ) ;
var

a : integer ;
Procedure P( i : integer ) ;
begin

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

begin
pv := @P; (∗ `` return ' ' P ( as s i d e e f f e c t ) ∗)

end ; (∗ "@" dependent on d i a l e c t ∗)
begin (∗ here : f r e e Pascal ∗)

Q( ) ;
pv ( 1 ) ;

end .

Function variables and nested scopes

• tricky part here: nested scope + function definition escaping surrounding function/scope.
• here: inner procedure “returned” via assignment to function variable
• think about stack discipline of dynamic memory management?
• related also: functions allowed as return value?

– Pascal: not directly possible (unless one “returns” them via function-typed reference
variables like here)

– C: possible, but nested function definitions not allowed
• combination of nested function definitions and functions as official return values (and argu-

ments): higher-order functions
• Note: functions as arguments less problematic than as return values.

For the sake of the lecture: Let’s not distinguish conceptually between functions and procedures.
But in Pascal, a procedure does not return a value, functions do.

Function signatures

• define the “header” (also “signature”) of a function6

• in the discussion: we don’t distinguish mostly: functions, procedures, methods, subroutines.
• functional type (independent of the name f): int→int

Modula-2

var f : procedure ( integer ) : integer ;

C

int (∗ f ) ( int )

• values: all functions (procedures . . . ) with the given signature
• problems with block structure and free use of procedure variables.

6Actually, an identfier of the function is mentioned as well.
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Escaping

1 program Funcvar ;
2 var pv : Procedure ( x : integer ) ; (∗ procedur var ∗)
3
4 Procedure Q( ) ;
5 var
6 a : integer ;
7 Procedure P( i : integer ) ;
8 begin
9 a:= a+i ; (∗ a def ' ed o u t s i d e ∗)

10 end ;
11 begin
12 pv := @P; (∗ `` return ' ' P ( as s i d e e f f e c t ) ∗)
13 end ; (∗ "@" dependent on d i a l e c t ∗)
14 begin (∗ here : f r e e Pascal ∗)
15 Q( ) ;
16 pv ( 1 ) ;
17 end .

• at the end of line 15: variable a no longer exists
• possible safe usage: only assign to such variables (here pv) a new value (= function) at the

same blocklevel the variable is declared

As mentioned before function parameters less problematic than returning them (as with function
variable), and the reason is that the stack-discipline in that case is still doable.

Classes and subclasses

Parent class

class A {
int i ;
void f ( ) { . . . }

}

Subclass B

class B extends A {
int i
void f ( ) { . . . }

}

Subclass C

class C extends A {
int i
void f ( ) { . . . }

}

• classes resemble records, and subclasses variant types, but additionally
– visibility: local methods possible (besides fields)
– subclasses
– objects mostly created dynamically, no references into the stack
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– subtyping and polymorphism (subtype polymorphism): a reference typed by A can also
point to B or C objects

• special problems: not really many, nil-pointer still possible

The three classes from above illustrate subclassing (and in many object-oriented languages, con-
nected to that, subtyping). Note that the classes are also names of types. What is also is illustrated
is overriding as far as f is concerned. Inheritance is actually not illustrated, insofar that f as only
method involved is overridden, not inherited both in B and C. The methods f and the instance
variables i are treated differently as far as binding is concerned. That will be discussed next. In
the slides we use rA to refer to a variable of static type/class A.

Access to object members: late binding

• notation rA.i or rA.f()
• dynamic binding, late-binding, virtual access, dynamic dispatch . . . : all mean roughly the

same
• central mechanism in many OO language, in connection with inheritance

Virtual access rA.f() (methods)

“deepest” f in the run-time class of the object, rA points to

• remember: “most-closely nested” access of variables in nested lexical block
• Java:

– methods “in” objects are only dynamically bound (but there are class methods too)
– instance variables not, neither static methods “in” classes.

Example: fields and methods

public class Shadow {
public stat ic void main ( St r ing [ ] a rgs ){

C2 c2 = new C2 ( ) ;
c2 . n ( ) ;

}
}

class C1 {
St r ing s = "C1" ;
void m () {System . out . p r i n t ( this . s ) ; }

}

class C2 extends C1 {
St r ing s = "C2" ;
void n ( ) { this .m( ) ; }

}

The code is compilable Java code and can thus be tested. It is supposed to illustrated the discussed
difference in the treatment of fields and methods, as far as binding is concerned. While the
mechanism for methods (which are late or dynamically bound) is called overriding, the similar
(but of course not same) situation for fields (which are statically bound) is called shadowing. One
may also see it like that: fields are treated as if they were static methods.
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Diverse notions

• Overloading
– common for (at least) standard, built-in operations
– also possible for user defined functions/methods . . .
– disambiguation via (static) types of arguments
– “ad-hoc” polymorphism
– implementation:

∗ put types of parameters as “part” of the name
∗ look-up gives back a set of alternatives

• type-conversions: can be problematic in connection with overloading
• (generic) polymporphism

swap(var x,y: anytype)

7.3 Equality of types

Classes as types

• classes = types? Not so fast
• more precise view:

– design decision in Java and similar languages (but not all/even not all class-based
OOLs): that class names are used in the role of (names of) types.

• other roles of classes (in class-based OOLs)
– generator of objects (via constructor, again with the same name)7

– containing code that implements the instances

C x = new C()

Example with interfaces

interface I1 { int m ( int x ) ; }
interface I2 { int m ( int x ) ; }
class C1 implements I1 {

public int m( int y ) {return y++; }
}
class C2 implements I2 {

public int m( int y ) {return y++; }
}

public class Noduck1 {
public stat ic void main ( St r ing [ ] arg ) {

I1 x1 = new C1 ( ) ; // I2 not p o s s i b l e
I2 x2 = new C2 ( ) ;
x1 = x2 ; // ???

}
}

Analogous when using classes in their roles as types

7Not for Java’s static classes etc, obviously.
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When are 2 types “equal”?

• type equivalence
• surprisingly many different answers possible
• implementor’s focus (deprecated): type int and short are equal, because they “are” both

2 byte
• type checker must often decide such equivalences
• related to a more fundamental question: what’s a type?

Example: pairs of integers

type pai r_of_ints = in t ∗ i n t ; ;
let x : pa i r_of_ints = ( 1 , 4 ) ; ;

Questions

• Is “the” type of (values of) x pair_of_ints, or
• the product type int * int , or
• both, as they are equal, i.e., pair_of_int is an abbreviation of the product type (type

synonym)?

For this particular language (ocaml), the piece of code is correct: the pair (1,4) is of type int
* int and of type pair_of_ints.

Structural vs. nominal equality

a, b

var a , b : r ecord
int i ;
double d

end

c

var c : r ecord
int i ;
double d

end
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typedef

typedef idRecord : r ecord
int i ;
double d

end

var d : idRecord ;
var e : idRecord ; ;

what’s possible?

a := c ;
a := d ;

a := b ;
d := e ;

Types in the AST

• types are part of the syntax, as well
• represent: either in a separate symbol table, or part of the AST

Record type

r ecord
x : po in t e r to real ;
y : array [ 1 0 ] of int

end
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Procedure header

proc (bool ,
union a : real ; b : char end ,
int ) : void

end

Structured types without names

var-decls → var-decls ; var-decl ∣ var-decl
var-decl → id ∶ type-exp
type-exp → simple-type ∣ structured-type

simple-type → int ∣ bool ∣ real ∣ char ∣ void
structured-type → array [num ] ∶ type-exp∣ record var-decls end∣ union var-decls end∣ pointerto type-exp∣ proc ( type-exps ) type-exp

type-exps → type-exps , type-exp ∣ type-exp
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Structural equality

Types with names

var-decls → var-decls ; var-decl ∣ var-decl
var-decl → id ∶ simple-type-exp

type-decls → type-decls ; type-decl ∣ type-decl
type-decl → id= type-exp
type-exp → simple-type-exp ∣ structured-type

simple-type-exp → simple-type ∣ id identifiers
simple-type → int ∣ bool ∣ real ∣ char ∣ void

structured-type → array [num ] ∶ simple-type-exp∣ record var-decls end∣ union var-decls end∣ pointerto simple-type-exp∣ proc ( type-exps ) simple-type-exp
type-exps → type-exps , simple-type-exp∣ simple-type-exp

Name equality

• all types have “names”, and two types are equal iff their names are equal
• type equality checking: obviously simpler



7 Types and type checking
7.3 Equality of types 253

• of course: type names may have scopes. . . .

Type aliases

• languages with type aliases (type synonyms): C, Pascal, ML . . . .
• often very convenient (type Coordinate = float * float)
• light-weight mechanism

type alias; make t1 known also under name t2

t2 = t1 // t2 i s the ``same type ' ' .

• also here: different choices wrt. type equality

Type aliases: different choices

Alias, for simple types

t1 = int ;
t2 = int ;

• often: t1 and t2 are the “same” type

Alias of structured types

t1 = array [ 1 0 ] of int ;
t2 = array [ 1 0 ] of int ;
t3 = t2

• mostly t3 /= t1 /= t2
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7.4 Type checking

Type checking of expressions (and statements)

• types of subexpressions must “fit” to the expected types the contructs can operate on
• type checking: top-down and bottom-up task⇒ synthesized attributes, when using AGs
• Here: using an attribute grammar specification of the type checker

– type checking conceptually done while parsing (as actions of the parser)
– more common: type checker operates on the AST after the parser has done its job

• type system vs. type checker
– type system: specification of the rules governing the use of types in a language, type

discipline
– type checker: algorithmic formulation of the type system (resp. implementation thereof)

Synthesized attributes

When drawing the parallel that type checking is a buttom-up (“synthesized”) task, that is only
half of the picture. The slide focuses on type checking if expresions (and statements). When it
comes to declarations (i.e., declaring a type for a variable, for instance), that part corresponds more
to “inherited” attributes. Remember that one standard way of implementing the association of
variables (“symbols”) with (here) types (which can be seen as an “attribute”) are symbol tables.

Overloading

In case of (operator) overloading: that may complicate the picture slightly. Operators are selected
depending on the type of the subexpressions. There will be some remarks concerning overloading
later.

As said on the slides, the type checker mostly nowadays would work after the parser is finished,
that means on the abstract syntax tree. One can, however, use grammars as specification of that
abstract syntax tree as well, i.e., as a “second” grammar besides the grammar for concrete parsing,
and that’s then the grammar the type checker works on.

Grammar for statements and expressions

program → var-decls ; stmts
var-decls → var-decls ; var-decl ∣ var-decl
var-decl → id ∶ type-exp
type-exp → int ∣ bool ∣ array [num ] ∶ type-exp

stmts → stmts ; stmt ∣ stmt
stmt → if exp then stmt ∣ id ∶= exp
exp → exp + exp ∣ exp or exp ∣ exp [ exp ]
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Type checking as semantic rules

More “modern” presentation

• representation as derivation rules
• Γ: notation for symbol table

– Γ(x): look-up
– Γ, x ∶ T : insert

• more compact representation
• one reason: “errors” left implicit.

Type checking (expressions)
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Γ(x) = T
TE-Id

Γ ⊢ x ∶ T TE-True
Γ ⊢ true ∶ bool

T-False
Γ ⊢ false ∶ bool

TE-Num
Γ ⊢ n ∶ int

Γ ⊢ exp2 ∶ array_of T Γ ⊢ exp3 ∶ int
TE-Array

Γ ⊢ exp2 [ exp3 ] ∶ T
Γ ⊢ exp1 ∶ bool Γ ⊢ exp3 ∶ bool

Te-Or
Γ ⊢ exp2 or exp3 ∶ bool

Γ ⊢ exp1 ∶ int Γ ⊢ exp3 ∶ int
TE-Plus

Γ ⊢ exp3 + exp3 ∶ int

Declarations and statements

Γ, x ∶int ⊢ rest ∶ ok
TD-Int

Γ ⊢ x ∶ int; rest ∶ ok

Γ, x ∶ bool ⊢ rest ∶ ok
TD-Bool

Γ ⊢ x ∶bool; rest ∶ ok

Γ ⊢ num ∶int Γ(type-exp) = T
Γ, x ∶ array num of T ⊢ rest ∶ ok

TD-Array
Γ ⊢ x ∶array [num ] ∶ type-exp ; rest ∶ ok

Γ ⊢ x ∶ T Γ ⊢ exp ∶ T
TS-Assign

Γ ⊢ x ∶= exp ∶ ok

Γ ⊢ exp ∶ bool
TS-If

Γ ⊢ if exp then stmt ∶ ok

Γ ⊢ stmt1 ∶ ok Γ ⊢ stmt2 ∶ ok
TS-Seq

Γ ⊢ stmt1 ; stmt2 ∶ ok
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Run-time environments
Chapter

What
is it

about?
Learning Targets of this Chapter
1. memory management
2. run-time environment
3. run-time stack
4. stack frames and their layout
5. heap

Contents
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8.3 Stack-based runtime envi-

ronments . . . . . . . . . . . . 262
8.4 Stack-based RTE with

nested procedures . . . . . . 275
8.5 Functions as parameters . . 279
8.6 Parameter passing . . . . . . 284
8.7 Virtual methods in OO . . . 288
8.8 Garbage collection . . . . . . 292

8.1 Intro

The chapter covers different aspects of the run-time environment of a language. The RTE refers
to the design, organization and implementation of them

Static & dynamic memory layout at runtime

code area

global/static area

stack

free space

heap

Memory

typical memory layout: for languages (as nowadays basically all) with

• static memory
• dynamic memory:
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– stack
– heap

The picture represents schematically a typical layout of the memory associated with one (single-
threaded) program under execution. At he highest level, there is a separation between “control”
and “data” of the program. The “control” of a program is program code itself, in compiled form, of
course, the machine code. The rest is the “data” the code operates on. Often, a strict separation
between the two parts is enforced, even with the help of the hardware and/or the operating system.
In principle, of course, the machine code is ultimately also “just bits”, so conceptually the running
program could modify the code section as well, leading to “self-modifying” code. That’s seen as
a no-no, and, as said, measures are taken that this does not happen. The generated code is not
only kept immutable, it’s also treated mostly as static (for instance as indicated in the picture):
the compiler generates the code, decides on how to arrange the different parts of the code, i.e. to
decide which code for which function comes where. Typically, as indicated at the picture, all code
is grouped together into one big adjacent block of memory, which is called the code area.

The above discussing about the code area mentions that the control part of a program is structured
into procedures (or functions, methods, subroutines . . . , generally one may use the term callable
unit). That’s a reminder that perhaps the single most important abstraction (as far as the control
flow goes) of all but the lowest level languages is function abstraction: the ability to build “callable
units” that can be reused at various points in a program, in different contexts, and with different
arguments. Of course they may be reused not just by various points in one complied program, but
by different programs (maybe even at the same time, in a multi-process environment). An collection
of such callable units, arranged coherently and in a proper manner is, of course, a library.

The static placement of callable units into the code segment may remind us of functions as abstrac-
tion a programming mechanism, but it’s not all that’s needed to actually provide, i.e., implement
that mechanism. At run-time, making use of a procedure means calling it and, when the pro-
cedure’s code has executed till completion, returning from it. Returing means that that control
continues at the point where the call originated (maybe not exactly at that point, but “immediately
afterwards”). This call-and-return behavior is at the core of realizing the procedure abstraction.
Calling a procedure can be seen as a jump (JMP) and likewise the return is nothing else than
executing an according jump instruction. Execiting a jump does nothing else than setting program
pointer to address given as argument of the instruction (which in the typical arrangement from
the picture is supposed to be an address in the code segment). Jumps are therefore rather simple
things, in particular, they are unaware of the intended call-return discipline. As a side remark:
the platform may offer variations of the plain jump instruction (like jump-to-subroutine and
return-from-subroutine, JTS and RTS or similar). That offer more “functionality” that
helps realizing the procedure call-return discipline, but ulitmately, they are nothine else than a
slighter more fancy form of jump, and the basic story remain: on top of hardware supported jumps,
one has to arrange steps that, at run-time, realize the call and return behavior. That needs to
involve the data area of the memory (since the code area is immutable). To the very least: a
return from a procedure needs to know where to return to (since it’s just a jump). So, when calling
a function, the run-time system must arrange to remember where to return to (and then, when
the time comes to actually return, look up that return address and us it for the jump back). In
general, in all but the simplest languages, calls can be nested, i.e., a function being called can in
turn call another function. In that nested situation procedures are executed LIFO fashion: the
procedure called last is returned from first. That means, we need to arrange the remembered
return addresses, one for each procedure call, in the form of a stack. The run-time stack is one
key ingredient of the run-time system for many language. It’s part of the dynamic portion of the
data memory and separate in the picture from the other dynamic memory part, the heap, from a
gulf of unused memory. In such an arrangement, the stack could grow “from above” and the heap
“from below” (other arrangements are of course possible, for instance not having heap and stack
compete for the same dynamic space, but each one living with an upper bound of their own).
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So far we have discussed only the bare bones of the run-time environment to realize the procedure
abstraction (the heap may be discussed later): in all by the very simplest settings, we need to
arrange to maintain a stack for return addresses and manpulate the stack properly at run-time. If
we had a trivial language, where function calls cannot be nested, we could do without a stack (or
have a stack of maximal length 1, which is not much of a stack). In a setting without recursion
(which we discuss also later), also similar simplifications are possible, and one could do without a
official stack (though the call/return would still be executed under LIFO discipline, of course).

But beside those bare-bones return-address stack, the procedure abstraction has more to offer to
the programmer than arranging a call/return execution of the control. What has been left out
of the picture, which concentrated on the control so far, is the treatment of data, in particular
procedure local data, so the question is related to how to realize at run-time the scoping rules that
govern local data in the face of procedure calls. Related to that is that of procedure parameters
and parameter passing. A procedure may have it’s own local data, but als receives data upon
being called as arguments. Indeed, the real power if the procedure abstraction not just relies on
code (control) being available for repeated exection, it owes its power on equal parts that it can
be executed variously on different arguments. Just relying on global variables and the fact that
calling a function in different contexts or situations will give the procedure different states for
some global values provides flexibility, but it’s an undignified attempt to achieve something like
parameter passing. All modern languages support syntax that allows the user to be explicit about
what is considered the input of a procedures, it’s formal parameters. And again, arrangements
have to be made such that, at run-time the parameter passing is done properly. We will discuss
different parameter-passing mechanisms later (the main being call-by-value, call-by-reference, and
call-by-name, as well as some bastard scheme of lesser importance). Furthermore, when calling
a procedure, the body may contain variables which are not local, but refer to variables defined
and given values outside of the procedure (and without officially being passed as parameter). Also
that needs to be arranged, and the arrangement varies deping on the scoping rules of the language
(static vs. dynamic binding).

Anyway, the upshot of all of this is: we need a stack that contains more than just the return
addresses, proper information pertaining to various aspects of data are needed as well. As a
consequence, the single slots in the run-time stack become more complex; they are known as
activation record (since the call of a procedure is also known as its activation).

The chapter will discuss different indgredients and variations of the activation record, depending
on features of the language.

Modifying the control flow

Translated program code
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code for procedure 1 proc. 1

code for procedure 2 proc. 2

⋮
code for procedure n proc. n

Code memory

• code segment: almost always considered as statically allocated⇒ neither moved nor changed at runtime
• compiler aware of all addresses of “chunks” of code: entry points of the procedures
• but:

– generated code often relocatable
– final, absolute adresses given by linker / loader

Activation record

space for arg’s (parameters)

space for bookkeeping
info, including return
address

space for local data

space for local temporaries

Schematic activation record

• schematic organization of activation records/activation block/stack frame . . .
• goal: realize

– parameter passing
– scoping rules /local variables treatment
– prepare for call/return behavior

• calling conventions on a platform

We will come back later to discuss possible designs for activation records in more detail, in the
section about stack-based run-time environments. Activiation records (also known as stack frames)
are the elementary slots of call stacks, a central way to organize the dynamic memory for languages
with (recursive) procedures. There are also limitations of stack-based organizations, which we also
touch upon.
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8.2 Static layout

Full static layout

code for main proc.

code for proc. 1

⋮
code for proc. n

global data area

act. record of main proc.

activation record of proc. 1

⋮
activation record of proc. n

• static addresses of all of memory known to the compiler
– executable code
– variables
– all forms of auxiliary data (for instance big constants in the program, e.g., string literals)

• for instance: (old) Fortran
• nowadays rather seldom (or special applications like safety critical embedded systems)

Fortran example

PROGRAM TEST
COMMONMAXSIZE
INTEGER MAXSIZE
REAL TABLE(10 ) ,TEMP
MAXSIZE = 10
READ ∗ , TABLE(1 ) ,TABLE(2 ) ,TABLE(3)
CALL QUADMEAN(TABLE, 3 ,TEMP)
PRINT ∗ ,TEMP
END

SUBROUTINE QUADMEAN(A,SIZE ,QMEAN)
COMMONMAXSIZE
INTEGERMAXSIZE,SIZE
REAL A(SIZE) ,QMEAN, TEMP
INTEGER K
TEMP = 0.0
IF ( (SIZE .GT.MAXSIZE) .OR. (SIZE .LT. 1 ) ) GOTO 99
DO 10 K = 1 , SIZE

TEMP = TEMP + A(K)∗A(K)
10 CONTINUE
99 QMEAN = SQRT(TEMP/SIZE)

RETURN
END
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Static memory layout example/runtime environment

MAXSIZEglobal area

TABLE (1)
(2)
. . .
(10)

TEMP

3

main’s act.
record

A

SIZE

QMEAN

return address

TEMP

K

“scratch area”

Act. record of
QUADMEAN

The details of the syntax and the exact way the program runs are not so important. Also for the
layout on the next slides, the exact details don’t matter too much. Important is the discinction
between global variables and local ones, here for those for the “subroutine” (procedure). The local
part of the memory for the procedure is a first taste of an activation record. Later they will be
organized in a stack, and then they are also called stack frames but it’s the same thing. It’s space
that will be used (at run-time) to fill the memory needs when calling the function (which is also
known as “activation” of the function). That needed space involves slots used to pass arguments
(parameter passing) and space for local variables. Needed also is a slot where to save the return
address. Apart from the fact that exact details don’t matter: what is often typical (and will also be
typical) is that the parameters are stored in slots before the return address and the local variables
afterwards. In a way, it’s a design choice, not a logical necessity, but it’s common (also later). It’s
often arranged like that, for reasons of efficiency. Later, the layout of the activation records will
need some refinement, i.e., there will be more than the mentioned information (parameters, local
variables, return address) to be stored, when we have to deal with recursion.

Static memory layout example/runtime environment

in Fortan (here Fortran77)

• parameter passing as pointers to the actual parameters
• activation record for QUADMEAN contains place for intermediate results, compiler calculates,

how much is needed.
• note: one possible memory layout for FORTRAN 77, details vary, other implementations

exists as do more modern versions of Fortran

8.3 Stack-based runtime environments

Stack-based runtime environments

• so far: no(!) recursion
• everything’s static, incl. placement of activation records
• ancient and restrictive arrangement of the run-time envs
• calls and returns (also without recursion) follow at runtime a LIFO (= stack-like) discipline
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Stack of activation records

• procedures as abstractions with own local data⇒ run-time memory arrangement where procedure-local data together with other info (arrange
proper returns, parameter passing) is organized as stack.

• AKA: call stack, runtime stack
• AR: exact format depends on language and platform

Situation in languages without local procedures

• recursion, but all procedures are global
• C-like languages

Activation record info (besides local data, see later)

• frame pointer
• control link (or dynamic link)1

• (optional): stack pointer
• return address

The notion of static links menioned in the footnote is basically the same we encountered before,
when discussing the design of symbol tables, in particular how to arrange them properly for nested
blocks and lexcical binding. Here (resp. shortly later down the road), the static links serve the
same purpose, only not linking up (parts of a ) symbol table, but activation records.

Euclid’s recursive gcd algo

#include <s td i o . h>

int x , y ;

int gcd ( int u , int v )
{ i f ( v==0) return u ;

else return gcd (v , u % v ) ;
}

int main ( )
{ s can f ( "%d%d" ,&x,&y ) ;

p r i n t f ( "%d\n" , gcd (x , y ) ) ;
return 0 ;

}

1Later, we’ll encounter also static links (aka access links).
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Stack gcd

x:15
y:10global/static area

“AR of main”

x:15
y:10

control link

return address

a-record (1st. call)

x:10
y:5

control link

return address

a-record (2nd.
call)

x:5
y:0

control link
fp

return address
sp

a-record (3rd. call)

↓
• control link

– aka: dynamic link
– refers to caller’s FP

• frame pointer FP
– points to a fixed location in the current a-record

• stack pointer (SP)
– border of current stack and unused memory

• return address: program-address of call-site

Local and global variables and scoping

Code

int x = 2 ; /∗ g l o b . var ∗/
void g ( int ) ; /∗ pro to type ∗/

void f ( int n)
{ stat ic int x = 1 ;

g (n ) ;
x−−;

}

void g ( int m)
{ int y = m−1;

i f ( y > 0)
{ f ( y ) ;

x−−;
g ( y ) ;

}
}

int main ( )
{ g (x ) ;

return 0 ;
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}

• global variable x
• but: (different) x local to f
• remember C:

– call by value
– static lexical scoping

Activation records and activation trees

• activation of a function: corresponds to: call of a function
• activation record

– data structure for run-time system
– holds all relevant data for a function call and control-info in “standardized” form
– control-behavior of functions: LIFO
– if data cannot outlive activation of a function⇒ activation records can be arranged in as stack (like here)
– in this case: activation record AKA stack frame

Activation record and activation trees

GCD

main()

gcd(15,10)

gcd(10,5)

gcd(5,0)

f and g example

main

g(2)

f(1)

g(1)

g(1)
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Variable access and design of ARs

Layout g

• fp: frame pointer
• m (in this example): parameter of g

Possible arrangement of g’s AR

• AR’s: structurally uniform per language (or at least compiler) / platform
• different function defs, different size of AR⇒ frames on the stack differently sized
• note: FP points

– not: “top” of the frame/stack, but
– to a well-chosen, well-defined position in the frame
– other local data (local vars) accessible relative to that

• conventions
– higher addresses “higher up”
– stack “grows” towards lower addresses
– in the picture: “pointers” to the “bottom” of the meant slot (e.g.: fp points to the

control link: offset 0)

Layout for arrays of statically known size

Code

void f ( int x , char c )
{ int a [ 1 0 ] ;

double y ;
. .

}

name offset
x +5
c +4
a -24
y -32

1. access of c and y
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c : 4( fp )
y : −32( fp )

2. access for A[i]

(−24+2∗ i ) ( fp )

Layout

Back to the C code again (global and local variables)

int x = 2 ; /∗ g l o b . var ∗/
void g ( int ) ; /∗ pro to type ∗/

void f ( int n)
{ stat ic int x = 1 ;

g (n ) ;
x−−;

}

void g ( int m)
{ int y = m−1;

i f ( y > 0)
{ f ( y ) ;

x−−;
g ( y ) ;

}
}

int main ( )
{ g (x ) ;

return 0 ;
}

2 snapshots of the call stack
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x:2
x:1 (@f)static

main

m:2

control link

return address

y:1

g

n:1

control link

return address

f

m:1

control link
fp

return address

y:0
sp

g

...

x:1
x:0 (@f)static

main

m:2

control link

return address

y:1

g

m:1

control link
fp

return address

y:0
sp

g

...

• note: call by value, x in f static

How to do the “push and pop”

• calling sequences: AKA as linking conventions or calling conventions
• for RT environments: uniform design not just of

– data structures (=ARs), but also of
– uniform actions being taken when calling/returning from a procedure

• how to do details of “push and pop” on the call-stack

E.g: Parameter passing

• not just where (in the ARs) to find value for the actual parameter needs to be defined, but
well-defined steps (ultimately code) that copies it there (and potentially reads it from there)
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• “jointly” done by compiler + OS + HW
• distribution of responsibilities between caller and callee:

– who copies the parameter to the right place
– who saves registers and restores them
– . . .

Steps when calling

• For procedure call (entry)
1. compute arguments, store them in the correct positions in the new activation record of

the procedure (pushing them in order onto the runtime stack will achieve this)
2. store (push) the fp as the control link in the new activation record
3. change the fp, so that it points to the beginning of the new activation record. If there

is an sp, copying the sp into the fp at this point will achieve this.
4. store the return address in the new activation record, if necessary
5. perform a jump to the code of the called procedure.
6. Allocate space on the stack for local var’s by appropriate adjustement of the sp

• procedure exit
1. copy the fp to the sp (inverting 3. of the entry)
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s

Steps when calling g

Before call

rest of stack

m:2

control link

return addr.
fp

y:1

...
sp

before call to g
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Pushed m

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

...
sp

pushed param.

Pushed fp

rest of stack

m:2

control link

return addr.
fp

y:1

m:1

control link

...
sp

pushed fp
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Steps when calling g (cont’d)

Return pushed

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

. . .
sp

fp := sp,push return addr.

local var’s pushed

rest of stack

m:2

control link

return addr.

y:1

m:1

control link

return address
fp

y:0

...
sp

alloc. local var y
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Treatment of auxiliary results: “temporaries”

Layout picture

rest of stack

. . .

control link

return addr.
fp

. . .

address of x[i]

result of i+j

result of i/k
sp

new AR for f
(about to be cre-
ated)

...

• calculations need memory for intermediate results.
• called temporaries in ARs.

x [ i ] = ( i + j ) ∗ ( i /k + f ( j ) ) ;

• note: x[i] represents an address or reference, i, j, k represent values2

• assume a strict left-to-right evaluation (call f(j) may change values.)
• stack of temporaries.
• [NB: compilers typically use registers as much as possible, what does not fit there goes into

the AR.]

Variable-length data

Ada code

type Int_Vector i s
array (INTEGER range <>) of INTEGER;

procedure Sum( low , high : INTEGER;
A: Int_Vector ) return INTEGER

i s
i : i n t e g e r

begin
. . .

end Sum ;

• Ada example
• assume: array passed by value (“copying”)
• A[i]: calculated as @6(fp) + 2*i
• in Java and other languages: arrays passed by reference
• note: space for A (as ref) and size of A is fixed-size (as well as low and high)

2integers are good for array-offsets, so they act as “references” as well.
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Layout picture

rest of stack

low:. . .

high:. . .

A:

size of A: 10

control link

return addr.
fp

i:...

A[9]

. . .

A[0]

...
sp

AR of call to SUM

Nested declarations (“compound statements”)

C Code

void p ( int x , double y )
{ char a ;

int i ;
. . . ;

A: { double x ;
int j ;
. . . ;

}
. . . ;

B: { char ∗ a ;
int k ;
. . . ;

} ;
. . . ;

}
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Nested blocks layout (1)

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

x:

j:

...
sp

area for block A allocated

Nested blocks layout (2)

rest of stack

x:

y:

control link

return addr.
fp

a:

i:

a:

k:

...
sp

area for block B allocated



8 Run-time environments
8.4 Stack-based RTE with nested procedures 275

8.4 Stack-based RTE with nested procedures

Nested procedures in Pascal

program nonLocalRef ;
procedure p ;
var n : integer ;

procedure q ;
begin

(∗ a r e f t o n i s now
non− l o c a l , non− g l o b a l ∗)

end ; (∗ q ∗)

procedure r ( n : integer ) ;
begin

q ;
end ; (∗ r ∗)

begin (∗ p ∗)
n := 1 ;
r ( 2 ) ;

end ; (∗ p ∗)

begin (∗ main ∗)
p ;

end .

• proc. p contains q and r nested
• also “nested” (i.e., local) in p: integer n

– in scope for q and r but
– neither global nor local to q and r

Accessing non-local var’s

Stack layout

vars of main

control link
return addr.

n:1

p

n:2
control link
return addr.

r

control link
fp

return addr.
sp

q

...

calls m → p → r → q

• n in q: under lexical scoping: n declared in procedure p is meant
• this is not reflected in the stack (of course) as this stack represents the run-time call stack.
• remember: static links (or access links) in connection with symbol tables

Symbol tables

• “name-addressable” mapping
• access at compile time
• cf. scope tree
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Dynamic memory

• “adresss-adressable” mapping
• access at run time
• stack-organized, reflecting paths in call graph
• cf. activation tree

Access link as part of the AR

Stack layout

vars of main

(no access link)

control link

return addr.

n:1

n:2

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

calls m → p → r → q

• access link (or static link): part of AR (at fixed position)
• points to stack-frame representing the current AR of the statically enclosed “procedural”

scope

Example with multiple levels

program chain ;

procedure p ;
var x : integer ;

procedure q ;
procedure r ;
begin

x :=2;
. . . ;
i f . . . then p ;

end ; (∗ r ∗)
begin

r ;
end ; (∗ q ∗)

begin
q ;

end ; (∗ p ∗)

begin (∗ main ∗)
p ;

end .
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Access chaining

Layout

AR of main

(no access link)

control link

return addr.

x:1

access link

control link

return addr.

access link

control link
fp

return addr.
sp

...

calls m → p → q → r

• program chain
• access (conceptual): fp.al.al.x
• access link slot: fixed “offset” inside AR (but: AR’s differently sized)
• “distance” from current AR to place of x

– not fixed, i.e.
– statically unknown!

• However: number of access link dereferences statically known
• lexical nesting level

Implementing access chaining

As example:

fp.al.al.al. ... al.x

• access need to be fast => use registers
• assume, at fp in dedicated register

4( fp ) −> reg // 1
4( fp ) −> reg // 2
. . .
4( fp ) −> reg // n = d i f f e r e n c e i n n e s t i n g l e v e l s
6( reg ) // a c c e s s content of x

• often: not so many block-levels/access chains nessessary
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Calling sequence

• For procedure call (entry)
1. compute arguments, store them in the correct positions in the new activation record of the

procedure (pushing them in order onto the runtume stack will achieve this)
2. – push access link, value calculated via link chaining (“ fp.al.al.... ”)

– store (push) the fp as the control link in the new AR
3. change fp, to point to the “beginning”

of the new AR. If there is an sp, copying sp into fp at this point will achieve this.
1. store the return address in the new AR, if necessary
2. perform a jump to the code of the called procedure.
3. Allocate space on the stack for local var’s by appropriate adjustement of the sp

• procedure exit
1. copy the fp to the sp
2. load the control link to the fp
3. perform a jump to the return address
4. change the sp to pop the arg’s and the access link

Calling sequence: with access links

Layout

AR of main
(no access link)

control link
return addr.

x:...

access link
control link
return addr.
access link
control link
return addr.

no access link
control link
return addr.

x:...

access link
control link
return addr.
access link
control link

fp
return addr.

sp
...

after 2nd call to r

• main → p → q → r → p → q → r
• calling sequence: actions to do the “push & pop”
• distribution of responsibilities between caller and callee
• generate an appropriate access chain, chain-length statically determined
• actual computation (of course) done at run-time
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8.5 Functions as parameters

Nested procedures in Pascal

Access link (again)

Procedures as parameter

program c l o s u r e e x ( output ) ;

procedure p ( procedure a ) ;
begin

a ;
end ;

procedure q ;
var x : integer ;

procedure r ;
begin

writeln ( x ) ; // ``non− l o c a l ' '
end ;

begin
x := 2 ;
p ( r ) ;

end ; (∗ q ∗)

begin (∗ main ∗)
q ;

end .

Procedures as parameters, same example in Go

package main
import ( " fmt " )

var p = func ( a ( func ( ) ( ) ) ) { // ( u n i t −> u n i t ) −> u n i t
a ( )

}

var q = func ( ) {
var x = 0
var r = func ( ) {
fmt . P r i n t f ( " x = %v " , x )
}
x = 2
p ( r ) // r as argument

}

func main ( ) {
q ( ) ;

}

Procedures as parameters, same example in ocaml

l e t p ( a : u n i t −> u n i t ) : u n i t = a ( ) ; ;

l e t q ( ) =
l e t x : i n t r e f = r e f 1
in l e t r = function ( ) −> ( p r i n t _ i n t ! x ) (∗ d e r e f ∗)
in
x := 2 ; (∗ a s s i g n m e n t t o r e f − t y p e d var ∗)
p ( r ) ; ;

q ( ) ; ; (∗ `` body o f main ' ' ∗)
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Closures and the design of ARs

• [9] rather “implementation centric”
• closure there:

– restricted setting
– specific way to achieve closures
– specific semantics of non-local vars (“by reference”)

• higher-order functions:
– functions as arguments and return values
– nested function declaration

• similar problems with: “function variables”
• Example shown: only procedures as parameters, not returned

Closures, schematically

• independent from concrete design of the RTE/ARs:
• what do we need to execute the body of a procedure?

Closure (abstractly)

A closure is a function body3 together with the values for all its variables, including the non-local ones.3

• individual AR not enough for all variables used (non-local vars)
• in stack-organized RTE’s:

– fortunately ARs are stack-allocated
→ with clever use of “links” (access/static links): possible to access variables that are “nested

further out”/ deeper in the stack (following links)

Organize access with procedure parameters

• when calling p: allocate a stack frame
• executing p calls a => another stack frame
• number of parameters etc: knowable from the type of a
• but 2 problems

“control-flow” problem

currently only RTE, but: how can (the compiler arrange that) p calls a (and allocate a frame for a) if a
is not know yet?

data problem

How can one statically arrange that a will be able to access non-local variables if statically it’s not known
what a will be?

• solution: for a procedure variable (like a): store in AR
– reference to the code of argument (as representation of the function body)
– reference to the frame, i.e., the relevant frame pointer (here: to the frame of q where r is

defined)
• this pair = closure!

3Resp.: at least the possibility to locate them.
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Closure for formal parameter a of the example

• stack after the call to p
• closure ⟨ip, ep⟩
• ep: refers to q’s frame pointer
• note: distinction in calling sequence for

– calling “ordinary” proc’s and
– calling procs in proc parameters (i.e., via closures)

• that may be unified (“closures” only)

After calling a (= r)

• note: static link of the new frame: used from the closure!
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Making it uniform

• note: calling conventions differ
– calling procedures as formal parameters
– “standard” procedures (statically known)

• treatment can be made uniform

Limitations of stack-based RTEs

• procedures: central (!) control-flow abstraction in languages
• stack-based allocation: intuitive, common, and efficient (supported by HW)
• used in many languages
• procedure calls and returns: LIFO (= stack) behavior
• AR: local data for procedure body

Underlying assumption for stack-based RTEs

The data (=AR) for a procedure cannot outlive the activation where they are declared.

• assumption can break for many reasons
– returning references of local variables
– higher-order functions (or function variables)
– “undisciplined” control flow (rather deprecated, goto’s can break any scoping rules, or procedure

abstraction)
– explicit memory allocation (and deallocation), pointer arithmetic etc.

Dangling ref’s due to returning references

int ∗ dangle ( void ) {
int x ; // l o c a l var
return &x ; // a d d r e s s o f x

}

• similar: returning references to objects created via new
• variable’s lifetime may be over, but the reference lives on . . .
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Function variables
program Funcvar ;
var pv : Procedure ( x : integer ) ; (∗ p r o c e d u r var ∗)

Procedure Q( ) ;
var

a : integer ;
Procedure P( i : integer ) ;
begin

a:= a+i ; (∗ a def ' ed o u t s i d e ∗)
end ;

begin
pv := @P; (∗ `` r e t u r n ' ' P ( as s i d e e f f e c t ) ∗)

end ; (∗ "@" d e p e n d e n t on d i a l e c t ∗)
begin (∗ h e r e : f r e e P a s c a l ∗)

Q( ) ;
pv ( 1 ) ;

end .

funcvar
Runtime error 216 at $0000000000400233

$0000000000400233
$0000000000400268
$00000000004001E0

Functions as return values
package main
import ( " fmt " )

var f = func ( ) ( func ( int ) int ) { // u n i t −> ( i n t −> i n t )
var x = 40 // l o c a l v a r i a b l e
var g = func ( y int ) int { // n e s t e d f u n c t i o n

return x + 1
}
x = x+1 // u p d a t e x
return g // f u n c t i o n as r e t u r n v a l u e

}

func main ( ) {
var x = 0
var h = f ( )
fmt . P r i n t l n ( x )
var r = h ( 1 )
fmt . P r i n t f ( " r = %v " , r )

}

• function g
– defined local to f
– uses x, non-local to g, local to f
– is being returned from f

Fully-dynamic RTEs

• full higher-order functions = functions are “data” same as everything else
– function being locally defined
– function as arguments to other functions
– functions returned by functions

→ ARs cannot be stack-allocated
• closures needed, but heap-allocated (/= Louden)
• objects (and references): heap-allocated
• less “disciplined” memory handling than stack-allocation
• garbage collection
• often: stack based allocation + fully-dynamic (= heap-based) allocation

The stack discipline can be seen as a particularly simple (and efficient) form of garbage collection: returning
from a function makes it clear that the local data can be thrashed.
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8.6 Parameter passing

Communicating values between procedures

• procedure abstraction, modularity
• parameter passing = communication of values between procedures
• from caller to callee (and back)
• binding actual parameters
• with the help of the RTE
• formal parameters vs. actual parameters
• two modern versions

1. call by value
2. call by reference

CBV and CBR, roughly

Core distinction/question

on the level of caller/callee activation records (on the stack frame): how does the AR of the callee get hold
of the value the caller wants to hand over?

1. callee’s AR with a copy of the value for the formal parameter
2. the callee AR with a pointer to the memory slot of the actual parameter

• if one has to choose only one: it’s call-by-value
• remember: non-local variables (in lexical scope), nested procedures, and even closures:

– those variables are “smuggled in” by reference
– [NB: there are also by value closures]

CBV is in a way the prototypical, most dignified way of parameter passsing, supporting the procedure
abstraction. If one has references (explicit or implicit, of data on the heap, typically), then one has call-
by-value-of-references, which, in some way “feels” for the programmer as call-by-reference. Some people
even call that call-by-reference, even if it’s technically not.

Parameter passing by-value

• in C: CBV only parameter passing method
• in some lang’s: formal parameters “immutable”
• straightforward: copy actual parameters → formal parameters (in the ARs).

C examples

void i n c 2 ( int x )
{ ++x , ++x ; }

void i n c 2 ( int ∗ x )
{ ++(∗x ) , ++(∗x ) ; }
/∗ c a l l : i n c (&y ) ∗/

void i n i t ( int x [ ] , int s i z e ) {
int i ;
for ( i =0; i<s i z e ,++ i ) x [ i ]= 0

}
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arrays: “by-reference” data

Call-by-reference

• hand over pointer/reference/address of the actual parameter
• useful especially for large data structures
• typically (for cbr): actual parameters must be variables
• Fortran actually allows things like P(5,b) and P(a+b,c).

void i n c 2 ( int ∗ x )
{ ++(∗x ) , ++(∗x ) ; }
/∗ c a l l : i n c (&y ) ∗/

void P( p1 , p2 ) {
. .
p1 = 3

}
var a , b , c ;
P( a , c )

Call-by-value-result

• call-by-value-result can give different results from cbr
• allocated as a local variable (as cbv)
• however: copied “two-way”

– when calling: actual → formal parameters
– when returning: actual ← formal parameters

• aka: “copy-in-copy-out” (or “copy-restore”)
• Ada’s in and out paremeters
• when are the value of actual variables determined when doing “actual ← formal parameters”

– when calling
– when returning

• not the cleanest parameter passing mechanism around. . .

Call-by-value-result example

void p ( int x , int y )
{

++x ;
++y ;

}

main ( )
{ int a = 1 ;

p ( a , a ) ; // :−O
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return 0 ;
}

• C-syntax (C has cbv, not cbvr)
• note: aliasing (via the arguments, here obvious)
• cbvr: same as cbr, unless aliasing “messes it up”4

Call-by-name (C-syntax)

• most complex (or is it . . . ?)
• hand over: textual representation (“name”) of the argument (substitution)
• in that respect: a bit like macro expansion (but lexically scoped)
• actual paramater not calculated before actually used!
• on the other hand: if needed more than once: recalculated over and over again
• aka: delayed evaluation
• Implementation

– actual paramter: represented as a small procedure (thunk, suspension), if actual parameter =
expression

– optimization, if actually parameter = variable (works like call-by-reference then)

Call-by-name examples

• in (imperative) languages without procedure parameters:
– delayed evaluation most visible when dealing with things like a[i]
– a[i] is actually like “apply a to index i”
– combine that with side-effects (i++) ⇒ pretty confusing

Example 1

void p ( int x ) { . . . ; ++x ; }

• call as p(a[i])
• corresponds to ++(a[i])
• note:

– ++ _ has a side effect
– i may change in ...

Example 2

int i ;
int a [ 1 0 ] ;
void p ( int x ) {

++i ;
++x ;

}

main ( ) {
i = 1 ;
a [ 1 ] = 1 ;
a [ 2 ] = 2 ;
p ( a [ i ] ) ;
return 0 ;

}

4One can ask though, if not call-by-reference would be messed-up in the example already.
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Another example: “swapping”

int i ; int a [ i ] ;

swap ( int a , b ) {
int i ;
i = a ;
a = b ;
b = i ;

}

i = 3 ;
a [ 3 ] = 6 ;

swap ( i , a [ i ] ) ;

• note: local and global variable i

Call-by-name illustrations

Code

procedure P( par ) : name par , i n t par
begin

i n t x , y ;
. . .
par := x + y ; (∗ a l t e r n a t i v e : x := par + y ∗)

end ;

P( v ) ;
P( r . v ) ;
P ( 5 ) ;
P( u+v )

v r.v 5 u+v
par := x+y ok ok error error
x := par +y ok ok ok ok

Call by name (Algol)

begin comment Simple a r r a y example ;
p r o c e d u r e z e r o ( Arr , i , j , u1 , u2 ) ;
i n t e g e r Arr ;
i n t e g e r i , j , u1 , u2 ;

b e g i n
f o r i := 1 s t e p 1 u n t i l u1 do

f o r j := 1 s t e p 1 u n t i l u2 do
Arr := 0

end ;

i n t e g e r a r r a y Work [ 1 : 1 0 0 , 1 : 2 0 0 ] ;
i n t e g e r p , q , x , y , z ;
x := 1 0 0 ;
y := 200
z e r o ( Work [ p , q ] , p , q , x , y ) ;
end

Lazy evaluation

• call-by-name
– complex & potentially confusing (in the presence of side effects)
– not really used (there)

• declarative/functional languages: lazy evaluation
• optimization:
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– avoid recalculation of the argument
⇒ remember (and share) results after first calculation (“memoization”)
– works only in absence of side-effects

• most prominently: Haskell
• useful for operating on infinite data structures (for instance: streams)

Lazy evaluation / streams

magic : : Int −> Int −> [ Int ]
magic 0 _ = [ ]
magic m n = m : ( magic n (m+n ) )

g e t I t : : [ Int ] −> Int −> Int
g e t I t [ ] _ = undefined
g e t I t ( x : xs ) 1 = x
g e t I t ( x : xs ) n = g e t I t xs ( n−1)

8.7 Virtual methods in OO

Object-orientation

• class-based/inheritance-based OO
• classes and sub-classes
• typed references to objects
• virtual and non-virtual methods

Virtual and non-virtual methods + fields

c l a s s A {
int x , y

void f ( s , t ) { . . . $F_A$ . . . } ;
virtual void g ( p , q ) { . . . $G_A$ . . . } ;

} ;

c l a s s B extends A {
int z

void f ( s , t ) { . . . $F_B$ . . . } ;
r e d e f void g ( p , q ) { . . . $G_B$ . . . } ;
virtual void h ( r ) { . . . $H_B$ . . . }

} ;

c l a s s C extends B {
int u ;
r e d e f void h ( r ) { . . . $H_C$ . . . } ;

}
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Call to virtual and non-virtual methods

non-virtual method f

call target
rA.f FA

rB .f FB

rC .f FB

virtual methods g and h

call target
rA.g GA or GB

rB .g GB

rC .g GB

rA.h illegal
rB .h HB or HC

rC .h HC
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Late binding/dynamic binding

• details very much depend on the language/flavor of OO
– single vs. multiple inheritance?
– method update, method extension possible?
– how much information available (e.g., static type information)?

• simple approach: “embedding” methods (as references)
– seldomly done (but needed for updateable methods)

• using inheritance graph
– each object keeps a pointer to its class (to locate virtual methods)

• virtual function table
– in static memory
– no traversal necessary
– class structure need be known at compile-time
– C++

Virtual function table

• static check (“type check”) of rX .f()
– for virtual methods: f must be defined in X or one of its superclasses

• non-virtual binding: finalized by the compiler (static binding)
• virtual methods: enumerated (with offset) from the first class with a virtual method, redefinitions

get the same “number”
• object “headers”: point to the class’s virtual function table
• rA.g():

c a l l r_A . v i r t t a b [ g _ o f f s e t ]

• compiler knows
– g_offset = 0
– h_offset = 1
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Virtual method implementation in C++

• according to [9]

c l a s s A {
p u b l i c :
double x , y ;
void f ( ) ;
v i r t u a l void g ( ) ;

} ;

c l a s s B: p u b l i c A {
p u b l i c :
double z ;
void f ( ) ;
v i r t u a l void h ( ) ;

} ;

Untyped references to objects (e.g. Smalltalk)

• all methods virtual
• problem of virtual-tables now: virtual tables need to contain all methods of all classes
• additional complication: method extension, extension methods
• Thus: implementation of r.g() (assume: f omitted)

– go to the object’s class
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– search for g following the superclass hierarchy.

8.8 Garbage collection

Management of dynamic memory: GC & alternatives

• dynamic memory: allocation & deallocation at run-time
• different alternatives

1. manual
– “alloc”, “free”
– error prone

2. “stack” allocated dynamic memory
– typically not called GC

3. automatic reclaim of unused dynamic memory
– requires extra provisions by the compiler/RTE

Heap

• “heap” unrelated to the well-known heap-data structure from A&D
• part of the dynamic memory
• contains typically

– objects, records (which are dynamocally allocated)
– often: arrays as well
– for “expressive” languages: heap-allocated activation records

∗ coroutines (e.g. Simula)
∗ higher-order functions

https://en.wikipedia.org/wiki/Simula
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code area

global/static area

stack

free space

heap

Memory

Problems with free use of pointers

int ∗ dangle ( void ) {
int x ; // l o c a l var
return &x ; // a d d r e s s o f x

}

typedef int (∗ proc ) ( void ) ;

proc g ( int x ) {
int f ( void ) { /∗ i l l e g a l ∗/

return x ;
}
return f ;

}

main ( ) {
proc c ;
c = g ( 2 ) ;
p r i n t f ( "%d\n " , c ( ) ) ; /∗ 2? ∗/
return 0 ;

}

• as seen before: references, higher-order functions, coroutines etc ⇒ heap-allocated ARs
• higher-order functions: typical for functional languages,
• heap memory: no LIFO discipline
• unreasonable to expect user to “clean up” AR’s (already alloc and free is error-prone)
• ⇒ garbage collection (already dating back to 1958/Lisp)

Some basic design decisions

• gc approximative, but non-negotiable condition: never reclaim cells which may be used in the future
• one basic decision:

1. never move “objects”
– may lead to fragmentation

2. move objects which are still needed
– extra administration/information needed
– all reference of moved objects need adaptation
– all free spaces collected adjacently (defragmentation)

• when to do gc?
• how to get info about definitely unused/potentially used obects?

– “monitor” the interaction program ↔ heap while it runs, to keep “up-to-date” all the time
– inspect (at approriate points in time) the state of the heap

Objects here are meant as heap-allocated entities, which in OO languages includes objects, but here
referring also to other data (records, arrays, closures . . . ).
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Mark (and sweep): marking phase

• observation: heap addresses only reachable

directly through variables (with references), kept in the run-time stack (or registers)
indirectly following fields in reachable objects, which point to further objects . . .

• heap: graph of objects, entry points aka “roots” or root set
• mark: starting from the root set:

– find reachable objects, mark them as (potentially) used
– one boolean (= 1 bit info) as mark
– depth-first search of the graph

Marking phase: follow the pointers via DFS

• layout (or “type”) of objects need to be known to determine where pointers are
• food for thought: doing DFS requires a stack, in the worst case of comparable size as the heap itself

. . . .

Compactation

Marked
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Compacted

After marking?

• known classification in “garbage” and “non-garbage”
• pool of “unmarked” objects
• however: the “free space” not really ready at hand:
• two options:

1. sweep
– go again through the heap, this time sequentially (no graph-search)
– collect all unmarked objects in free list
– objects remain at their place
– RTE need to allocate new object: grab free slot from free list

2. compaction as well:
– avoid fragmentation
– move non-garbage to one place, the rest is big free space
– when moving objects: adjust pointers

Stop-and-copy

• variation of the previous compactation
• mark & compactation can be done in recursive pass
• space for heap-managment

– split into two halves
– only one half used at any given point in time
– compactation by copying all non-garbage (marked) to the currently unused half
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Step by step
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Intermediate code generation
Chapter

What
is it

about?
Learning Targets of this Chapter

1. intermediate code
2. three-address code and P-code
3. translation to those forms
4. translation between those forms

Contents

9.1 Intro . . . . . . . . . . . . . . 297
9.2 Intermediate code . . . . . . 299
9.3 Three address code . . . . . . 300
9.4 P-code . . . . . . . . . . . . . 302
9.5 Generating P-code . . . . . . 305
9.6 Generation of three address

code . . . . . . . . . . . . . . . 310
9.7 Basic: From P-code to 3A-

Code and back: static simu-
lation & macro expansion . . 314

9.8 More complex data types . . 318
9.9 Control statements and log-

ical expressions . . . . . . . . 326

9.1 Intro

Schematic anatomy of a compiler1

• code generator:

1This section is based on slides from Stein Krogdahl, 2015.
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– may in itself be “phased”
– using additional intermediate representation(s) (IR) and intermediate code

A closer look

Various forms of “executable” code

• different forms of code: relocatable vs. “absolute” code, relocatable code from libraries, assembler,
etc

• often: specific file extensions
– Unix/Linux etc.

∗ asm: *.s
∗ rel: *.a
∗ rel from library: *.a
∗ abs: files without file extension (but set as executable)

– Windows:
∗ abs: *.exe2

• byte code (specifically in Java)
– a form of intermediate code, as well
– executable on the JVM
– in .NET/C♯: CIL

∗ also called byte-code, but compiled further

Generating code: compilation to machine code

• 3 main forms or variations:
1. machine code in textual assembly format (assembler can “compile” it to 2. and 3.)
2. relocatable format (further processed by loader)
3. binary machine code (directly executable)

• seen as different representations, but otherwise equivalent
• in practice: for portability

– as another intermediate code: “platform independent” abstract machine code possible.
– capture features shared roughly by many platforms

∗ e.g. there are stack frames, static links, and push and pop, but exact layout of the frames
is platform dependent

– platform dependent details:

2.exe-files include more, and “assembly” in .NET even more
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∗ platform dependent code
∗ filling in call-sequence / linking conventions

done in a last step

Byte code generation

• semi-compiled well-defined format
• platform-independent
• further away from any HW, quite more high-level
• for example: Java byte code (or CIL for .NET and C♯)

– can be interpreted, but often compiled further to machine code (“just-in-time compiler” JIT)
• executed (interpreted) on a “virtual machine” (JVM)
• often: stack-oriented execution code (in post-fix format)
• also internal intermediate code (in compiled languages) may have stack-oriented format (“P-code”)

9.2 Intermediate code

Use of intermediate code

• two kinds of IC covered
1. three-address code (3AC, 3AIC)

– generic (platform-independent) abstract machine code
– new names for all intermediate results
– can be seen as unbounded pool of maschine registers
– advantages (portability, optimization . . . )

2. P-code (“Pascal-code”, cf. Java “byte code”)
– originally proposed for interpretation
– now often translated before execution (cf. JIT-compilation)
– intermediate results in a stack (with postfix operations)

• many variations and elaborations for both kinds
– addresses represented symbolically or as numbers (or both)
– granularity/“instruction set”/level of abstraction: high-level op’s available e.g., for array-access

or: translation in more elementary op’s needed.
– operands (still) typed or not
– . . .

Various translations in the lecture

Text

• AST here: tree structure after semantic analysis, let’s call it AST+ or just simply AST.
• translation AST ⇒ P-code: appox. as in Oblig 2
• we touch upon many general problems/techniques in “translations”
• one (important) aspect ignored for now: register allocation
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Picture

AST+

TAIC p-code

9.3 Three address code

Three-address code

• common (form of) IR

TA: Basic format

x = y op z

• x, y, z: names, constants, temporaries . . .
• some operations need fewer arguments

• example of a (common) linear IR
• linear IR: ops include control-flow instructions (like jumps)
• alternative linear IRs (on a similar level of abstraction): 1-address code (stack-machine code), 2

address code
• well-suited for optimizations
• modern archictures often have 3-address code like instruction sets (RISC-architectures)

3AC example (expression)

2*a+(b-3)

+

*

2 a

-

b 3
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Three-address code

t1 = 2 ∗ a
t2 = b − 3
t3 = t1 + t2

alternative sequence

t1 = b − 3
t2 = 2 ∗ a
t3 = t2 + t1

3AIC instruction set

• basic format: x = y op z
• but also:

– x = op z
– x = y

• operators: +,-,*,/, <, >, and, or
• readx, writex
• labelL (sometimes called a “pseudo-instruction”)
• conditional jumps: if_false x goto L
• t1, t2, t3 . . . . (or t1, t2, t3, . . . ): temporaries (or temporary variables)

– assumed: unbounded reservoir of those
– note: “non-destructive” assignments (single-assignment)

Illustration: translation to 3AIC

Source

read x ; { input an integer }
i f 0<x then

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
w r i t e f a c t { output :

f a c t o r i a l of x }
end

Target: 3AIC

read x
t1 = x > 0
i f _ f a l s e t1 goto L1
f a c t = 1
label L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 goto L2
write f a c t
label L1
halt
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Variations in the design of TA-code

• provide operators for int, long, float . . . .?
• how to represent program variables

– names/symbols
– pointers to the declaration in the symbol table?
– (abstract) machine address?

• how to store/represent TA instructions?
– quadruples: 3 “addresses” + the op
– triple possible (if target-address (left-hand side) is always a new temporary)

Quadruple-representation for 3AIC (in C)

9.4 P-code

P-code

• different common intermediate code / IR
• aka “one-address code”3 or stack-machine code
• originally developed for Pascal
• remember: post-fix printing of syntax trees (for expressions) and “reverse polish notation”

Example: expression evaluation 2*a+(b-3)

3There’s also two-address codes, but those have fallen more or less in disuse.
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ldc 2 ; load c o n s t a n t 2
lod a ; load value of v a r i a b l e a
mpi ; i n t e g e r m u l t i p l i c a t i o n
lod b ; load value of v a r i a b l e b
ldc 3 ; load c o n s t a n t 3
sbi ; i n t e g e r s u b s t r a c t i o n
adi ; i n t e g e r a d d i t i o n

P-code for assignments: x := y + 1

• assignments:
– variables left and right: L-values and R-values
– cf. also the values ↔ references/addresses/pointers

lda x ; load a d d r e s s of x
lod y ; load value of y
ldc 1 ; load c o n s t a n t 1
adi ; add
sto ; s t o r e top to a d d r e s s

; below top & pop both

P-code of the faculty function

Source

read x ; { input an integer }
i f 0<x then

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
w r i t e f a c t { output :

f a c t o r i a l of x }
end
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P-code
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9.5 Generating P-code

Expression grammar

Grammar

exp1 → id= exp2
exp → aexp

aexp → aexp2 + factor
aexp → factor

factor → ( exp )

factor → num
factor → id

(x=x+3)+4

+

x=

+

x 3

4

Generating p-code with A-grammars

• goal: p-code as attribute of the grammar symbols/nodes of the syntax trees
• syntax-directed translation
• technical task: turn the syntax tree into a linear IR (here P-code)
⇒ – “linearization” of the syntactic tree structure

– while translating the nodes of the tree (the syntactical sub-expressions) one-by-one

• not recommended at any rate (for modern/reasonably complex language): code generation while
parsing4

The use of A-grammars is perhps more a conceptual picture, In practice, one may not use a-grammars and
corresponding tools in the implementation.

A-grammar for statements/expressions

• focus here on expressions/assignments: leaving out certain complications
• in particular: control-flow complications

– two-armed conditionals
– loops, etc.

• also: code-generation “intra-procedural” only, rest is filled in as call-sequences
• A-grammar for intermediate code-gen:

– rather simple and straightforwad
– only 1 synthesized attribute: pcode

4one can use the a-grammar formalism also to describe the treatment of ASTs, not concrete syntax
trees/parse trees.



306 9 Intermediate code generation
9.5 Generating P-code

A-grammar

• “string” concatenation: ++ (construct separate instructions) and ˆ (construct one instruction)5

productions/grammar rules semantic rules
exp1 → id= exp2 exp1 .pcode = ”lda”ˆid.strval ++

exp2 .pcode ++ ”stn”
exp → aexp exp .pcode = aexp .pcode

aexp1 → aexp2 + factor aexp1 .pcode = aexp2 .pcode
++ factor .pcode
++ ”adi”

aexp → factor aexp .pcode = factor .pcode
factor → ( exp ) factor .pcode = exp .pcode
factor → num factor .pcode = ”ldc”ˆnum.strval
factor → id factor .pcode = ”lod”ˆnum.strval

(x = x + 3) + 4

Attributed tree

+

x∶=

+

x 3

4

result

lod x ldc 3

lod x
ldc 3
adi

ldc 4

lda x
lod x
ldc 3
adi 3
stn

“result” attr.

lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +

Rest

• note: here x=x+3 has side effect and “return” value (as in C . . . ):
• stn (“store non-destructively”)

– similar to sto , but non-destructive
1. take top element, store it at address represented by 2nd top
2. discard address, but not the top-value

5So, the result is not 100% linear. In general, one should not produce a flat string already.
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Overview: p-code data structures

Source

type symbol = s t r i n g

type expr =
| Var of symbol
| Num of i n t
| Plus of expr ∗ expr
| Assign of symbol ∗ expr

Target

type i n s t r = (∗ p−code i n s t r u c t i o n s ∗)
LDC of i n t

| LOD of symbol
| LDA of symbol
| ADI
| STN
| STO

type t r e e = Onel ine of i n s t r
| Seq of t r e e ∗ t r e e

type program = i n s t r l i s t

Rest

• symbols:
– here: strings for simplicity
– concretely, symbol table may be involved, or variable names already resolved in addresses etc.

Two-stage translation

v a l to_tree : A s t e x p r a s s i g n . expr −> Pcode . t r e e

v a l l i n e a r i z e : Pcode . t r e e −> Pcode . program

v a l to_program : A s t e x p r a s s i g n . expr −> Pcode . program

l e t rec to_tree ( e : expr ) =
match e with
| Var s −> ( Onel ine (LOD s ) )
| Num n −> ( Onel ine (LDC n ) )
| Plus ( e1 , e2 ) −>

Seq ( to_tree e1 ,
Seq ( to_tree e2 , Onel ine ADI) )

| Assign ( x , e ) −>
Seq ( Onel ine (LDA x ) ,

Seq ( to_tree e , Onel ine STN) )

l e t rec l i n e a r i z e ( t : t r e e ) : program =
match t with

Onel ine i −> [ i ]
| Seq ( t1 , t2 ) −> ( l i n e a r i z e t1 ) @ ( l i n e a r i z e t2 ) ; ; // l i s t concat

l e t to_program e = l i n e a r i z e ( to_tree e ) ; ;
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Source language AST data in C

• remember though: there are more dignified ways to design ASTs . . .

Code-generation via tree traversal (schematic)

procedure genCode(T: t r e e n o d e )
begin

i f T $\not = $ n i l
then

`` g e n e r a t e code to prepare for code for l e f t c h i l d ' ' // p r e f i x
genCode ( l e f t c h i l d of T ) ; // p r e f i x ops
`` g e n e r a t e code to prepare for code for r i g h t c h i l d ' ' // i n f i x

genCode ( r i g h t c h i l d of T ) ; // i n f i x ops
`` g e n e r a t e code to implement a c t i o n ( s ) for T' ' // p o s t f i x

end ;

Code generation from AST+

Text

• main “challenge”: linearization
• here: relatively simple
• no control-flow constructs
• linearization here (see a-grammar):

– string of p-code
– not necessarily the best choice (p-code might still need translation to “real” executable code)
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Figure

preamble code

calc. of operand 1

fix/adapt/prepare ...

calc. of operand 2

execute operation

Code generation

First



310 9 Intermediate code generation
9.6 Generation of three address code

Second

9.6 Generation of three address code

3AC manual translation again

Source

read x ; { input an integer }
i f 0<x then

f a c t := 1 ;
repeat

f a c t := f a c t ∗ x ;
x := x −1

until x = 0 ;
w r i t e f a c t { output :

f a c t o r i a l of x }
end

Target: 3AC

read x
t1 = x > 0
i f _ f a l s e t1 goto L1
f a c t = 1
label L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 goto L2
write f a c t
label L1
halt
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Expression grammar again

Three-address code data structures (some)

Data structures (1)

type symbol = s t r i n g

type expr =
| Var of symbol
| Num of i n t
| Plus of expr ∗ expr
| Assign of symbol ∗ expr

Data structures (2)

type mem =
Var of symbol

| Temp of symbol
| Addr of symbol (∗ &x ∗)

type operand = Const of i n t
| Mem of mem

type cond = Bool of operand
| Not of operand
| Eq of operand ∗ operand
| Leq of operand ∗ operand
| Le of operand ∗ operand

type rhs = Plus of operand ∗ operand
| Times of operand ∗ operand
| Id of operand

type i n s t r =
Read of symbol

| Write of symbol
| Lab of symbol (∗ pseudo i n s t r u c t i o n ∗)
| Assign of symbol ∗ rhs
| AssignRI of operand ∗ operand ∗ operand (∗ a := b [ i ] ∗)
| AssignLI of operand ∗ operand ∗ operand (∗ a [ i ] := b ∗)
| BranchComp of cond ∗ l a b e l
| Halt
| Nop

type t r e e = Onel ine of i n s t r
| Seq of t r e e ∗ t r e e

type program = i n s t r l i s t

(∗ Branches are not so c l e a r . I t a k e i n s p i r a t i o n f i r s t from ASU. I t seems
t h a t Louden has t h e TAC i f _ f a l s e t g o t o L . The Dragonbook a l l o w s a c t u a l l y
more complex s t r u c t u r e , namely comparisons . However , two−armed b r a n c h e s are
not welcome ( t h a t would be a t r e e −IR ) ∗)

(∗ Array a c c e s s : For a r r a y a c c e s s e s l i k e a [ i +1] = b [ j ] e t c . one c o u l d add
s p e c i a l commands . Louden i n d i c a t e s t h a t , b u t a l s o i n d i c a t e s t h a t i f one
has i n d i r e c t a d d r e s s i n g and a r i t h m e t i c o p e r a t i o n s , one does not need
t h o s e . In t h e TAC o f t h e dragon books , t h e y have such o p e r a t i o n s , so I
add them h e r e as w e l l . Of c o u r s e one s u r e not a l l o w c o m p l e t e l y f r e e
forms l i k e a [ i +1] = b [ j ] i n TAC, as t h i s i n v o l v e s more than 3
a d d r e s s e s . Louden s u g g e s t s two o p e r a t o r s , ` ` [ ]= ' ' and ` ` [ ] = ' ' .

We c o u l d i n t r o d u c e more complex operands , l i k e a [ i ] b u t t h e n we would
a l l o w non− t h r e e a d d r e s s code t h i n g s . We don ' t do t h a t ( o f course , t h e
s y n t a x i s a l r e a d y s l i g h t l y t o o l i b e r a l . . . )

∗)

Rest

• symbols: again strings for simplicity
• again “trees” not really needed (for simple language without more challenging control flow)
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Translation to three-address code

l e t rec to_tree ( e : expr ) : t r e e ∗ temp =
match e with

Var s −> ( Onel ine Nop , s )
| Num i −> ( Onel ine Nop , s t r i n g _ o f _ i n t i )
| Ast . Plus ( e1 , e2 ) −>

(match ( to_tree e1 , to_tree e2 ) with
( ( c1 , t1 ) , ( c2 , t2 ) ) −>

l e t t = newtemp ( ) in
( Seq ( Seq ( c1 , c2 ) ,

Onel ine (
Assign ( t ,

Plus (Mem(Temp( t1 ) ) ,Mem(Temp( t2 ) ) ) ) ) ) ,
t ) )

| Ast . Assign ( s ' , e ' ) −>
l e t ( c , t2 ) = to_tree ( e ' )
in ( Seq ( c ,

Onel ine ( Assign ( s ' ,
Id (Mem(Temp( t2 ) ) ) ) ) ) ,

t2 )

Three-address code by synthesized attributes

• similar to the representation for p-code
• again: purely synthesized
• semantics of executing expressions/assignments6

– side-effect plus also
– value

• two attributes (before: only 1)
– tacode: instructions (as before, as string), potentially empty
– name: “name” of variable or tempary, where result resides7

• evaluation of expressions: left-to-right (as before)

A-grammar

productions/grammar rules semantic rules
exp1 → id= exp2 exp1 .name = exp2 .name

exp1 .tacode = exp2 .tacode ++
id.strvalˆ”=”ˆ exp2 .name

exp → aexp exp .name = aexp .name
exp .tacode = aexp .tacode

aexp1 → aexp2 + factor aexp1 .name = newtemp()
aexp1 .tacode = aexp2 .tacode ++ factor .tacode ++

aexp1 .nameˆ”=”ˆ aexp2 .nameˆ
”+”ˆ factor .name

aexp → factor aexp .name = factor .name
aexp .tacode = factor .tacode

factor → ( exp ) factor .name = exp .name
factor .tacode = exp .tacode

factor → num factor .name = num.strval
factor .tacode = ””

factor → id factor .name = num.strval
factor .tacode = ””

6That’s one possibility of a semantics of assignments (C, Java).
7In the p-code, the result of evaluating expression (also assignments) ends up in the stack (at the top).
Thus, one does not need to capture it in an attribute.
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Another sketch of TA-code generation

switch kind {
case OpKind :

switch op {
case Plus : {

tempname = new temorary name ;
varname_1 = r e c u r s i v e c a l l on l e f t subt ree ;
varname_2 = r e c u r s i v e c a l l on r i g h t subt ree ;
emit ( " tempname = varname_1 + varname_2 " ) ;
return ( tempname ) ; }

case Assign : {
varname = id . for va r i ab l e on l h s ( in the node ) ;
varname 1 = r e cu r s i v e c a l l in l e f t subt ree ;
emit ( " varname = opname" ) ;
return ( varname ) ; }

}
case ConstKind ; { return ( constant − s t r i n g ) ; } // emit nothing
case IdKind : { return ( i d e n t i f i e r ) ; } // emit nothing

}

• “return” of the two attributes
– name of the variable (a temporary): officially returned
– the code: via emit

• note: postfix emission only (in the shown cases)

Generating code as AST methods

• possible: add genCode as method to the nodes of the AST
• e.g.: define an abstract method String genCodeTA() in the Exp class (or Node, in general all

AST nodes where needed)

St r ing genCodeTA ( ) { St r ing s1 , s2 ; S t r ing t = NewTemp ( ) ;
s1 = l e f t .GenCodeTA ( ) ;
s2 = r i gh t .GenCodeTA ( ) ;
emit ( t + "=" + s1 + op + s2 ) ;
return t

}

Whether it is a good design from the perspective of modular compiler architecture and code maintenance,
to clutter the AST with methods for code generation and god knows what else, e.g. type checking,
optimization . . . , is a different question.

Translation to three-address code (from before)

let rec to_tree ( e : expr ) : t r e e ∗ temp =
match e with

Var s −> ( Onel ine Nop , s )
| Num i −> ( Onel ine Nop , s t r ing_of_int i )
| Ast . Plus ( e1 , e2 ) −>

(match ( to_tree e1 , to_tree e2 ) with
( ( c1 , t1 ) , ( c2 , t2 ) ) −>

let t = newtemp ( ) in
( Seq ( Seq ( c1 , c2 ) ,

Onel ine (
Assign ( t ,
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Plus (Mem(Temp( t1 ) ) ,Mem(Temp( t2 ) ) ) ) ) ) ,
t ) )

| Ast . Assign ( s ' , e ' ) −>
let ( c , t2 ) = to_tree ( e ' )
in ( Seq ( c ,

Onel ine ( Assign ( s ' ,
Id (Mem(Temp( t2 ) ) ) ) ) ) ,

t2 )

Attributed tree (x=x+3) + 4

• note: room for optimization

9.7 Basic: From P-code to 3A-Code and back: static simulation
& macro expansion

“Static simulation”

• illustrated by transforming P-code ⇒ 3AC
• restricted setting: straight-line code
• cf. also basic blocks (or elementary blocks)

– code without branching or other control-flow complications (jumps/conditional jumps. . . )
– often considered as basic building block for static/semantic analyses,
– e.g. basic blocks as nodes in control-flow graphs, the “non-semicolon” control flow constructs

result in the edges
• terminology: static simulation seems not widely established
• cf. abstract interpretation, symbolic execution, etc.
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P-code ⇒ 3AIC via “static simulation”

• difference:
– p-code operates on the stack
– leaves the needed “temporary memory” implicit

• given the (straight-line) p-code:
– traverse the code = list of instructions from beginning to end
– seen as “simulation”

∗ conceptually at least, but also
∗ concretely: the translation can make use of an actual stack

From P-code ⇒ 3AIC: illustration

P-code ⇐ 3AIC: macro expansion

• also here: simplification, illustrating the general technique, only
• main simplification:

– register allocation
– but: better done in just another optmization “phase”

Macro for general 3AIC instruction: a = b + c

lda a
lod b ; or `` ldc b ' ' i f b i s a const
lod c : or `` ldc c ' ' i f c i s a const
adi
sto
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Example: P-code ⇐ 3AIC ((x=x+3)+4)

Left

1. source 3A-code

t1 = x + 3
x = t2
t2 = t1 + 4

2. Direct P-code

lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +

P-code via 3A-code by macro exp.

;−−− t1 = x + 3
lda t1
lod x
ldc 3
adi
sto
;−−− x = t1
lda x
lod t1
sto
;−−− t2 = t1 + 4
lda t2
lod t1
ldc 4
adi
sto

Rest

cf. indirect 13 instructions vs. direct: 7 instructions

Indirect code gen: source code ⇒ 3AIC ⇒ p-code

• as seen: detour via 3AIC leads to sub-optimal results (code size, also efficiency)
• basic deficiency: too many temporaries, memory traffic etc.
• several possibilities

– avoid it altogether, of course (but remember JIT in Java)
– chance for code optimization phase
– here: more clever “macro expansion” (but sketch only)

the more clever macro expansion: some form of static simulation again

• don’t macro-expand the linear 3AIC
– brainlessly into another linear structure (P-code), but
– “statically simulate” it into a more fancy structure (a tree)
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“Static simulation” into tree form (sketch)

• more fancy form of “static simulation” of 3AIC
• result: tree labelled with

– operator, together with
– variables/temporaries containing the results

Source

t1 = x + 3
x = t2
t2 = t1 + 4

Tree

+

+

x 3

4

t2

x,t1

note: instruction x = t1 from 3AIC: does not lead to more nodes in the tree

P-code generation from the generated tree

Tree from 3AIC

+

+

x 3

4

t2

x,t1

Direct code = indirect code

lda x
lod x
ldc 3
adi
stn
ldc 4
adi ; +
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Rest

• with the thusly (re-)constructed tree
⇒ p-code generation

– as before done for the AST
– remember: code as synthesized attributes

• the “trick”: reconstruct essential syntactic tree structure (via “static simulation”) from the 3AI-code
• Cf. the macro expanded code: additional “memory traffic” (e.g. temp. t1)

Compare: AST (with direct p-code attributes)

+

x∶=

+

x 3

4

result

lod x ldc 3

lod x
ldc 3
adi

ldc 4

lda x
lod x
ldc 3
adi 3
stn

9.8 More complex data types

Status update: code generation

• so far: a number of simplifications
• data types:

– integer constants only
– no complex types (arrays, records, references, etc.)

• control flow
– only expressions and
– sequential composition
⇒ straight-line code

Address modes and address calculations

• so far
– just standard “variables” (l-variables and r-variables) and temporaries, as in x = x + 1
– variables referred to by their names (symbols)

• but in the end: variables are represented by addresses
• more complex address calculations needed

addressing modes in 3AIC:

• &x: address of x (not for temporaries!)
• *t: indirectly via t
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addressing modes in P-code

• ind i: indirect load
• ixa a: indexed address

Address calculations in 3AIC: x[10] = 2

• notationally represented as in C
• “pointer arithmetic” and address calculation with the available numerical ops

Code

t1 = &x + 10
∗ t1 = 2

Picture

Rest

• 3-address-code data structure (e.g., quadrupel): extended (adding address mode)

Address calculations in P-code: x[10] = 2

• tailor-made commands for address calculation

• ixa i: integer scale factor (here factor 1)
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Code

lda x
ldc 10
ixa 1
ldc 2
sto

Picture

In the two pictures, the a is mnonic for a value representing an address. In the code example: The ixa
command expects two argument on the stack (and has as third argument the scale factor as part of the
command. To make use of the command, we first load the address of x loaded and afterwards constant
10. Executing then the ixa 1 command yields does the calculation in the box, which is intended as
address calculation. So the result of that calculation is (intended as) an address again. To that address,
the constant 2 is stored (and the values discared from the stack: sto is the “destructive” write).

Array references and address calculations

int a [ SIZE ] ; int i , j ;
a [ i +1] = a [ j ∗2 ] + 3 ;

• difference between left-hand use and right-hand use
• arrays: stored sequentially, starting at base address
• offset, calculated with a scale factor (dep. on size/type of elements)
• for example: for a[i+1] (with C-style array implementation)8

a + (i+1) * sizeof(int)

• a here directly stands for the base address

Array accesses in 3AI code

• one possible way: assume 2 additional 3AIC instructions
• remember: 3AIC can be seen as intermediate code, not as instruction set of a particular HW!
• 2 new instructions9

t2 = a [ t1 ] ; f e t ch value o f array element

a [ t2 ] = t1 ; a s s i gn to the address o f an array element

8In C, arrays start at a 0-offset as the first array index is 0. Details may differ in other languages.
9Still in 3AIC format. Apart from the “readable” notation, it’s just two op-codes, say =[] and []=.
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Source code

a [ i +1] = a [ j ∗2 ] + 3 ;

TAC

t1 = j ∗ 2
t2 = a [ t1 ]
t3 = t2 + 3
t4 = i + 1
a [ t4 ] = t3

We have mentioned that IC is an intermediate representation that may be more or less closes to actual
machine code. It’s a design decision, and there are trade-offs either way. Like in this case: obviously
it’s (slightly) easier to translate array accesses to a 3AIC which offers such array accesses itself (like on
this slide). It’s, however, not too big a step to do the translation without this extra luxury. In the next
following we see how to do without those array-accesses at the IC level (both for 3AIC as well as for
P-code). That’s done by macro-expansion, something that we touched upon earlier. The fact that one can
“expand away” the extra commands show there are no real complications either way (with or without that
extra expressivity).

One interesting aspect, though, is the use of the helper-function elem_size. Note that this depends on
the type of the data structure (the elements of the array). It may also depend on the platform, which
means, the function elem_size is (at the point of intermediate code generation) conceptually not yet
available, but must provided and used when generating platform-dependent code. As similar “trick” we
will see soon when compiling record-accesses (in the form of a function field_offset.

As a side remark: syntactic constract that can be expressed in that easy way, by forms of macro-expansion,
are sometimes also called “syntactic sugar”.

Or “expanded”: array accesses in 3AI code (2)

Expanding t2=a[t1]

t3 = t1 ∗ e lem_size ( a )
t4 = &a + t3
t2 = ∗ t4

Expanding a[t2]=t1

t3 = t2 ∗ e lem_size ( a )
t4 = &a + t3
∗ t4 = t1
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Rest

• “expanded” result for a[i+1] = a[j*2] + 3

t1 = j ∗ 2
t2 = t1 ∗ e lem_size ( a )
t3 = &a + t2
t4 = ∗ t3
t5 = t4 +3
t6 = i + 1
t7 = t6 ∗ e lem_size ( a )
t8 = &a + t7
∗ t8 = t5

Array accessses in P-code

Expanding t2=a[t1]

lda t2
lda a
lod t1
ixa e lement_size ( a )
ind 0
sto

Expanding a[t2]=t1

lda a
lod t2
ixa e lem_size ( a )
lod t1
sto

Rest

• “expanded” result for a[i+1] = a[j*2] + 3

lda a
lod i
ldc 1
adi
ixa elem_size ( a )
lda a
lod j
ldc 2
mpi
ixa elem_size ( a )
ind 0
ldc 3
adi
sto
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Extending grammar & data structures

• extending the previous grammar

exp → subs = exp2 ∣ aexp
aexp → aexp + factor ∣ factor

factor → ( exp ) ∣ num ∣ subs
subs → id ∣ id [ exp ]

Syntax tree for (a[i+1]=2)+a[j]

+

=

a[]

+

i 1

2

a[]

j

Code generation for P-code

The next slides show (as C code) how one could generate code for the “array access” grammar from before.
Compared to the procedures for code generation before, the procedure has one additional argument, a
boolean flag. That has to do with the disciction we want to make (here) whether the argument is to be
interpeted as address or not. And that in turn is related between so called L-values and R-values and the
fact that the grammar allows “assignments” (written x = exp2) to be expressions themsevlves. In the
code generation, that is reflected also by the fact we use stn (non-destructive writing).

Otherwise: compare the code snippet from the earlier slides about “Array accesses in P-code”.

Code generation for P-code (op)

void genCode ( SyntaxTree t , int i sAddr ) {
char c o d e s t r [ CODESIZE ] ;
/∗ CODESIZE = max l e n g t h o f 1 l i n e o f P−code ∗/
i f ( t != NULL) {

switch ( t−>kind ) {
case OpKind :

{ switch ( t−>op ) {
case Plus :

i f ( i s A d d r e s s ) emitCode( " Error " ) ; // new c h e c k
e l s e { // unchanged

genCode( t−>l c h i l d , FALSE ) ;
genCode( t−>r c h i l d , FALSE ) ;
emitCode( " adi " ) ; // a d d i t i o n

}
break ;

case Assign :
genCode( t−>l c h i l d ,TRUE) ; // `` l − v a l u e ' '
genCode( t−>r c h i l d , FALSE ) ; // ``r− v a l u e ' '
emitCode( " stn " ) ;
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Code generation for P-code (“subs”)

• new code, of course

case Subs :
s p r i n t f ( c o d e s t r i n g , "%s %s " , " lda " , t−> s t r v a l ) ;
emitCode( c o d e s t r i n g ) ;
genCode( t−> l c h i l d . FALSE ) ;
s p r i n t f ( c o d e s t r i n g , "%s %s %s " ,

" i x a elem_size ( " , t−>s t r v a l , " ) " ) ;
emitCode( c o d e s t r i n g ) ;
i f ( ! i sAddr ) emitCode( " ind 0 " ) ; // i n d i r e c t l o a d
break ;

default :
emitCode( " Error " ) ;
break ;

Code generation for P-code (constants and identifiers)

case ConstKind :
i f ( i sAddr ) emitCode( " Error " ) ;
e l s e {

s p r i n t f ( c o d e s t r , "%s %s " , " l d s " , t−> s t r v a l ) ;
emitCode( c o d e s t r ) ;

}
break ;

case IdKind :
i f ( i sAddr )

s p r i n t f ( c o d e s t r , "%s %s " , " lda " , t−> s t r v a l ) ;
e l s e

s p r i n t f ( c o d e s t r , "%s %s " , " lod " , t−> s t r v a l ) ;
emitCode( c o d e s t r ) ;
break ;

default :
emitCode( " Error " ) ;
break ;

}
}

}

Access to records

C-Code

typedef struct r e c {
int i ;
char c ;
int j ;

} Rec ;
. . .

Rec x ;
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Layout

Rest

• fields with (statically known) offsets from base address
• note:

– goal: intermediate code generation platform independent
– another way of seeing it: it’s still IR, not final machine code yet.

• thus: introduce function field_offset(x,j)
• calculates the offset.
• can be looked up (by the code-generator) in the symbol table
⇒ call replaced by actual off-set

Records/structs in 3AIC

• note: typically, records are implicitly references (as for objects)
• in (our version of a) 3AIC: we can just use &x and *x

simple record access x.j

t1 = &x + f i e l d _ o f f s e t ( x , j )

left and right: x.j = x.i

t1 = &x + f i e l d _ o f f s e t ( x , j )
t2 = &x + f i e l d _ o f f s e t ( x , i )
∗ t1 = ∗ t2
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Field selection and pointer indirection in 3AIC

C code

typedef struct treeNode {
int v a l ;
struct treeNode ∗ l c h i l d ,

∗ r c h i l d ;
} treeNode
. . .

Treenode ∗p ;

Assignment involving fields

p −> l c h i l d = p ;
p = p−> r c h i l d ;

1. 3AIC

t1 = p + f i e l d _ a c c e s s (∗ p , l c h i l d )
∗ t1 = p
t2 = p + f i e l d _ a c c e s s (∗ p , r c h i l d )
p = ∗ t2

Structs and pointers in P-code

• basically same basic “trick”
• make use of field_offset(x,j)

3AIC

p −> l c h i l d = p ;
p = p−> r c h i l d ;

lod p
ldc f i e l d _ o f f s e t (∗ p , l c h i l d )
ixa 1
lod p
sto
lda p
lod p
ind f i e l d _ o f f s e t (∗ p , r c h i l d )
sto

9.9 Control statements and logical expressions

So far, we have dealt with straight-line code only. The main “complication” were compound expression,
which do not exist in the intermediate code, neither in 3AIC nor in the p-code. That reqired the intro-
duction of temporaries resp. the use of the stack to store those intermediate results. The core addition
to deal with control statements is the use of labels. Labels can be seen as “symbolic” respresentations of
“programming lines” or “control points”. Ultimately, in the final binary, the platform will support jumps
and conditional jumps which will “transfer” control (= program pointer) from one address to another,
“jumping to an address”. Since we are still at an intermediate code level, we do jumps not to real ad-
dressed but to labels (referring to the starting point of seqquences of intermediate code). As a side remark:
also assembly language editors will in general support labels the assembly programmer can use to make
the program at least a bit more human-readable (and relocatable). Labels and goto statements are also



9 Intermediate code generation
9.9 Control statements and logical expressions 327

known in (not-so-)high-level languages such as classic Basic (and even Java has goto as reserved word,
even if it makes no use of it).

Besides the treatment of control constructs, we discuss a related issue namely a particular use of boolean
expression. It’s discussed here as well, as (in some languages) boolean expression can behave as control-
constructs, as well. Consequently, the translation of that form of booleans, require similar mechanisms
(labels) as the translation of standard-control statements. In C-like languages, that’s know as short-
circuiting.

As a not-so-important side remark: Concretely in C, “booleans” and conditions operate also on more than
just a boolean two valued domain (containting true and false or 0 and 1). In C, “everything” that’s
not 0 is treated as 1. That may sounds not too “logical” but reflects how some hardware instructions and
conditional jumps work. Doing some operations sets “ hardware flags” which then are used for conditional
jumps: jump-on-zero checks whether the corresponds flag is set accordingly. Furthermore, in functional
languges, the phenomenon also occurs (but typically not called short-circuiting), and in general there, the
dividing line between control and data is blurred anyway.

Control statements

• so far: basically straight-line code
• general (intra-procedural) control more complex thanks to control-statements

– conditionals, switch/case
– loops (while, repeat, for . . . )
– breaks, gotos, exceptions . . .

important “technical” device: labels

• symbolic representation of addresses in static memory

• specifically named (= labelled) control flow points
• nodes in the control flow graph

• generation of labels (cf. also temporaries)

Intra-procedural means “inside” a procedure. Inter-procedural control-flow refers to calls and returns,
which is handled by calling sequences (which also maintain (in standard C-like languages) the call-stack
of the RTE).

Concerning gotos: gotos (if the language supports them) are almost trivial in code generation, as they
are basically available at machine code level. Nonetheless, they are “considered harmful”, as they mess
up/break abstractions and other things in a compiler/language.

Loops and conditionals: linear code arrangement

if -stmt → if ( exp ) stmt else stmt
while-stmt → while ( exp ) stmt

• challenge:
– high-level syntax (AST) well-structured (= tree) which implicitly (via its structure) determines

complex control-flow beyond SLC
– low-level syntax (3AIC/P-code): rather flat, linear structure, ultimately just a sequence of

commands
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Arrangement of code blocks and cond. jumps

Conditional

While

The “graphical” representation can also be understood as control flow graph. The nodes contain sequences
of “basic statements” of the form we covered before (like one-line 3AIC assignments) but not conditionals
and similar and no procedure calls (we don’t cover them in the chapter anyhow). So the nodes (also known
as basic blocks) contain staight-line code.
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In the following we show how to translate conditionals and while statements into intermediate code, both
for 3AIC and p-code. The translation is rather straightforward (and actually very similar for both cases,
both making use of labels).

To do the translation, we need to enhance the set of available “op-codes” (= available commands). We
need a mechanism for labelling and a mechanism for conditional jumps. Both kind of statement need to be
added to 3AIC and p-code, and it basically works the same, except that the actual syntax of the commands
is different. But that’s details.

Jumps and labels: conditionals

if (E) then S1 else S2

3AIC for conditional

<code to e v a l $E$ to t1>
i f _ f a l s e t1 goto L1

<code f o r $S_1$>
goto L2
label L1

<code f o r $S_2$>
label L2

P-code for conditional

<code to e v a l u a t e $E$>
f j p L1

<code f o r $S_1$>
ujp L2
lab L1
<code f o r S2>
lab L2

3 new op-codes:

• ujp: unconditional jump (“goto”)
• fjp: jump on false
• lab: label (for pseudo instructions)

Jumps and labels: while

while (E) S

3AIC for while

label L1
<code to e v a l u a t e $E$ to t1>
i f _ f a l s e t1 goto L2

<code f o r S>
goto L1
label L2
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P-code for while

lab L1
<code to e v a l u a t e $E$>
f j p L2

<code f o r $S$>
ujp L1
lab L2

Boolean expressions

• two alternatives for treatment
1. as ordinary expressions
2. via short-circuiting

• ultimate representation in HW:
– no built-in booleans (HW is generally untyped)
– but “arithmetic” 0, 1 work equivalently & fast
– bitwise ops which corresponds to logical ∧ and ∨ etc

• comparison on “booleans”: 0 < 1?
• boolean values vs. jump conditions

Short circuiting boolean expressions

Short circuit illustration

i f ( ( p!=NULL) && p −> v a l ==0)) . . .

• done in C, for example
• semantics must fix evaluation order
• note: logically equivalent a ∧ b = b ∧ a
• cf. to conditional expressions/statements (also left-to-right)

a and b ≜ if a then b else false
a or b ≜ if a then true else b

Pcode

lod x
ldc 0
neq ; x!=0 ?
f j p L1 ; jump , i f x=0
lod y
lod x
equ ; x =? y
ujp L2 ; hop over
lab L1
ldc FALSE
lab L2

• new op-codes
– equ
– neq

The code is a bit cryptic (one should ponder what it computes . . . ). It might not be also the best
represetation, for instance, one may come up with a different solution that does not load x two times.

A side remark: we are still at intermediate code. Optimizations and the use of registers have not yet
entered the picture. That is to say, that the above remark that x is loaded two times might be of not so
much concern ultimately, as an optimizer and register allocator should be able to do something about it.
On the other hand: why generate inefficient code in the hope the optimizer will clean it up.
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Grammar for loops and conditionals

stmt → if -stmt ∣ while-stmt ∣ break ∣ other
if -stmt → if ( exp ) stmt else stmt

while-stmt → while ( exp ) stmt
exp → true ∣ false

• note: simplistic expressions, only true and false
typedef enum {ExpKind , I f k i n d , Whilekind ,

BreakKind , OtherKind} NodeKind ;

typedef struct s t r e e n o d e {
NodeKind kind ;
struct s t r e e n o d e ∗ c h i l d [ 3 ] ;
int v a l ; /∗ used w i t h ExpKind ∗/

/∗ used f o r t r u e v s . f a l s e ∗/
} STreeNode ;

type StreeNode ∗ SyntaxTree ;

Translation to P-code

i f ( t r u e ) while ( t r u e ) i f ( f a l s e ) break e l s e o t h e r

Syntax tree

P-code

ldc t r u e
f j p L1
lab L2
ldc t r u e
f j p L3
ldc f a l s e
f j p L4
ujp L3
ujp L5
lab L4
Other
lab L5
ujp L2
lab L3
lab L1
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Code generation

• extend/adapt genCode
• break statement:

– absolute jump to place afterwards
– new argument: label to jump-to when hitting a break

• assume: label generator genLabel()
• case for if-then-else

– has to deal with one-armed if-then as well: test for NULL-ness

• side remark: control-flow graph (see also later)
– labels can (also) be seen as nodes in the control-flow graph
– genCode generates labels while traversing the AST
⇒ implict generation of the CFG
– also possible:

∗ separately generate a CFG first
∗ as (just another) IR
∗ generate code from there

Code generation procedure for P-code
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Code generation (1)

Code generation (2)

More on short-circuiting (now in 3AIC)

• boolean expressions contain only two (official) values: true and false
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• as stated: boolean expressions are often treated special: via short-circuiting
• short-circuiting especially for boolean expressions in conditionals and while-loops and similar

– treat boolean expressions different from ordinary expressions
– avoid (if possible) to calculate boolean value “till the end”

• short-circuiting: specified in the language definition (or not)

Example for short-circuiting

Source

i f a < b | |
( c > d && e >= f )

then
x = 8

e l s e
y = 5

endif

3AIC

t1 = a < b
if_true t1 goto 1 // s h o r t c i r c u i t
t2 = c > d
i f _ f a l s e goto 2 // s h o r t c i r c u i t
t3 = e >= f
i f _ f a l s e t3 goto 2
label 1
x = 8
goto 3
label 2
y = 5
label 3

Code generation: conditionals (as seen)
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Alternative P/3A-Code generation for conditionals

• Assume: no break in the language for simplicity
• focus here: conditionals
• not covered of [9]

Alternative 3A-Code generation for boolean expressions
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10.1 Intro

Code generation

• note: code generation so far: AST+ to intermediate code
– three address intermediate code (3AIC)
– P-code

• ⇒ intermediate code generation
• i.e., we are still not there . . .
• material here: based on the (old) dragon book [2] (but principles still ok)
• there is also a new edition [1]

This section is based on slides from Stein Krogdahl, 2015. In this section we work with 2AC as machine
code (as from the older, classical “dragon book”). An alternative would be 3AC also on code level (not
just intermediate code); details would change, but the principles would be comparable. Note: the message
of the chapter is not: in the last translation and code generation step, one has to find a way to translate
3-address code two 2-address code. If one assumed machine code in a 3-address format, the principles
would be similar. The core of the code generation is the (here rather simple) treatment of registers. The
code generation and register allocation presented here is rather straightforward; it will look “detailed” and
“complicated”, but it’s not very complex in that the optimization puts very much computational effort into
the code generation. One optimization done is is based on liveness analysis. An occurrence of a variable is
“dead”, if the variable will not be read in the future (unless it’s first overwritten). The opposite concept is
that the occurrence of a variable is live. It should be obvious that this kind of information is essential for
making good decisions for register allocation. The general problem there is: we have typically less registers
than variables and temps. So the compiler must make a section: who should be in a register and who
not? A static scheme like “the first variables in, say, alphabetical order, should be in registers, the others
not” is not worth being called optimization. . . First-come-first-serve like “if I need a variable, I load it
to a registers, if there is still some free, otherwise not” is not much better. Basically, what is missing is
taking into account information when a variable is no longer used (when no longer life), thereby figuring
out, at which point a register can be considered free again. Note that we are not talking about run-time,
we are talking about code generation, i.e., compile time. The code generator must generate instructions
that loads variables to registers it has figured out to be free (again). The code generator therefore needs to
keep track over the free and occupied registers; more precisely, it needs to keep track of which variable is
contained in which register, resp. which register contains which variable. Actually, in the code generation
later, it can even happen that one register contains the values of more than one variable. Based on such a
book-keeping the code generation must also make decisions like the following: if a value needs to be read
from main memory and is intended to be in a register but all of them are full, which register should be
“purged”. As far as the last question is concerned, the lecture will not drill deep. We will concentrate
on liveness analysis and we will do that in two stages: a block-local one and a global one. the local one
concentrates on one basic block, i.e., one block of straight-line code. That makes the code generation kind
of like what had been called “static simulation” before. In particular, the liveness information is precise
(inside the block): the code generator knows at each point which variables are live (i.e., will be used in
the rest of the block) and which not. When going to a global liveness analysis, that precision is no longer
doable, and one goes for an approximative approach. The treatment there is typical for data flow analysis.
There are many data flow analyses, for different purposes, but we only have a look at liveness analysis
with the purpose of optimizing register allocation.

Intro: code generation

• goal: translate intermediate code (= 3AI-code) to machine language
• machine language/assembler:

– even more restricted
– here: 2 address code

• limited number of registers
• different address modes with different costs (registers vs. main memory)
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Goals

• efficient code
• small code size also desirable
• but first of all: correct code

When not said otherwise: efficiency refers in the following to efficiency of the generated code. Fastness of
compilation may be important, as well (and same for the size of the compiler itself, as opposed to the size
of the generated code). Obviously, there are trade-offs to be made.

Code “optimization”

• often conflicting goals
• code generation: prime arena for achieving efficiency
• optimal code: undecidable anyhow (and: don’t forget there’s trade-offs).
• even for many more clearly defined subproblems: untractable

“optimization”

interpreted as: heuristics to achieve “good code” (without hope for optimal code)

• due to importance of optimization at code generation
– time to bring out the “heavy artillery”
– so far: all techniques (parsing, lexing, even sometimes type checking) are computationally

“easy”
– at code generation/optimization: perhaps invest in aggressive, computationally complex and

rather advanced techniques
– many different techniques used

The above statement that everything so far was computationally simple is perhaps an over-simplificcation.
For example, type inference, aka type reconstruction, is computationally heavy, at least in the worst case.
There are indeed technically advanced type systems around. Nonetheless, it’s often a valuable goal not
to spend too much time in type checking and furthermore, as far as later optimization is concerned one
could give the user the option how much time he is willing to invest and consequently, how agressive the
optimization is done.

The word “untractable” on the slides refers to computational complexity; untractable are those for which
there is no efficient algorithm to solve them. Tractable refers conventionally to polynomial time efficiency.
Note that it does not say how “bad” the polynomial is, so being tractable in that sense still might not
mean practically useful. For non-tractable problems, it’s often guaranteed that they don’t scale.

10.2 2AC and costs of instructions

2-address machine code used here

• “typical” op-codes, but not a instruction set of a concrete machine
• two address instructions
• Note: cf. 3-address-code intermediate representation vs. 2-address machine code

– machine code is not lower-level/closer to HW because it has one argument less than 3AC
– it’s just one illustrative choice
– the new Dragon book: uses 3-address-machine code (being more modern)

• 2 address machine code: closer to CISC architectures,
• RISC architectures rather use 3AC.
• translation task from IR to 3AC or 2AC: comparable challenge
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2-address instructions format

Format

OP source dest

• note: order of arguments here
• restrictions on source and target

– register or memory cell
– source: can additionally be a constant

Also the book Louden [9] uses 2AC. In the 2A machine code there for instance on page 12 or the introductory
slides, the order of the arguments is the opposite!

ADD a b // b := a + b
SUB a b // b := b − a
MUL a b // b := b + a
GOTO i // u n c o n d i t i o n a l jump

• further opcodes for conditional jumps, procedure calls . . . .

Side remarks: 3A machine code

Possible format

OP s o u r c e 1 s o u r c e 2 d e s t

• but: what’s the difference to 3A intermediate code?
• apart from a more restricted instruction set:
• restriction on the operands, for example:

– only one of the arguments allowed to be a memory access
– no fancy addressing modes (indirect, indexed . . . see later) for memory cells, only for registers

• not “too much” memory-register traffic back and forth per machine instruction
• example:

&x = &y + *z

may be 3A-intermediate code, but not 3A-machine code

Cost model

• “optimization”: need some well-defined “measure” of the “quality” of the produced code
• interested here in execution time
• not all instructions take the same time
• estimation of execution
• factors outside our control/not part of the cost model: effect of caching
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cost factors:

• size of instruction
– it’s here not about code size, but
– instructions need to be loaded
– longer instructions ⇒ perhaps longer load

• address modes (as additional costs: see later)
– registers vs. main memory vs. constants
– direct vs. indirect, or indexed access

Instruction modes and additional costs

Mode Form Address Added cost
absolute M M 1
register R R 0
indexed c(R) c + cont(R) 1

indirect register *R cont(R) 0
indirect indexed *c(R) cont(c + cont(R)) 1

literal #M the value M 1 only for source

• indirect: useful for elements in “records” with known off-set
• indexed: useful for slots in arrays

Examples a := b + c

Two variants

1. Using registers
MOV b , R0 // R0 = b
ADD c , R0 // R0 = c + R0
MOV R0 , a // a = R0

c o s t = 6

2. Memory-memory ops

MOV b , a // a = b
ADD c , a // a = c + a

c o s t = 6

Use of registers

1. Data already in registers
MOV ∗R1 , ∗R0 // ∗R0 = ∗R1
ADD ∗R2 , ∗R1 // ∗R1 = ∗R2 + ∗R1

c o s t = 2

Assume R0, R1, and R2 contain addresses for a, b, and c
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2. Storing back to memory

ADD R2 , R1 // R1 = R2 + R1
MOV R1 , a // a = R1

c o s t = 3

Assume R1 and R2 contain values for b, and c

10.3 Basic blocks and control-flow graphs

Basic blocks

• machine code level equivalent of straight-line code
• (a largest possible) sequence of instructions without

– jump out
– jump in

• elementary unit of code analysis/optimization1

• amenable to analysis techniques like
– static simulation/symbolic evaluation
– abstract interpretation

• basic unit of code generation

Control-flow graphs

CFG

basically: graph with

• nodes = basic blocks
• edges = (potential) jumps (and “fall-throughs”)

• here (as often): CFG on 3AIC (linear intermediate code)
• also possible CFG on low-level code,
• or also:

– CFG extracted from AST2

– here: the opposite: synthesizing a CFG from the linear code
• explicit data structure (as another intermediate representation) or implicit only.

When saying on the slides, a CFG is “basically” a graph, we mean that, apart from some fundamentals
which makes them graphs, details may vary. In particular, it may well be the case in a compiler, that
cfg’s are some accessible intermediate representation, i.e., a specific concrete data structure, with concrete
choices for representation. For example, we present here control-flow graphs as directed graphs: nodes are
connected to other nodes via edges (depicted as arrows), which represent potential successors in terms of
the control flow of the program. Concretely, the data structure may additionally (for reasons of efficiency)
also represent arrows from successor nodes to predecessor nodes, similar to the way, that linked lists may
be implemented in a doubly-linked fashion. Such a representation would be useful when dealing with data
flow analyses that work “backwards”. As a matter of fact: the one data flow analysis we cover in this
lecture (live variable analysis) is of that “backward” kind. Other bells and whistles may be part of the
concrete representation, like dedicated start and end nodes. For the purpose of the lecture, when don’t go
into much concrete details, for us, cfg’s are: nodes (corresponding to basic blocks) and edges. This general
setting is the most conventional view of cfg’s.

1Those techniques can also be used across basic blocks, but then they become more costly and challenging.
2See also the exam 2016.
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From 3AC to CFG: “partitioning algo”

• remember: 3AIC contains labels and (conditional) jumps
⇒ algo rather straightforward
• the only complication: some labels can be ignored
• we ignore procedure/method calls here
• concept: “leader” representing the nodes/basic blocks

Leader

• first line is a leader
• GOTO i: line labelled i is a leader
• instruction after a GOTO is a leader

Basic block

instruction sequence from (and including) one leader to (but excluding) the next leader or to the end of
code

Partitioning algo

• note: no line jumps to L2

3AIC for faculty (from before)

read x
t1 = x > 0
i f _ f a l s e t1 g o t o L1
f a c t = 1
l a b e l L2
t2 = f a c t ∗ x
f a c t = t2
t3 = x − 1
x = t3
t4 = x == 0
i f _ f a l s e t4 g o t o L2
write f a c t
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l a b e l L1
halt

Faculty: CFG

CFG picture

Remarks

• goto/conditional goto: never inside block
• not every block

– ends in a goto
– starts with a label

• ignored here: function/method calls, i.e., focus on
• intra-procedural cfg

Intra-procedural refers to “inside” one procedure. The opposite is inter-procedural. Inter-procedural anal-
yses and the corresponding optimizations are quite harder than intra-procedural. In this lecture, we don’t
cover inter-procedural considerations. Except that call sequences and parameter passing has to do of course
with relating different procedures and in that case deal with inter-procedural aspects. But that was in
connection with the run-time environments, not what to do about in connection with analysis, register
allocation, or optimization. So, in this lecture resp. this chapter, “local” refers to inside one basic block,
“global” refers to across many blocks (but inside one procedure). Later, we have a short look at “global”
liveness analysis. As mentioned, we dont’ cover analyses across procedures, in the terminogy used here,
they would be even “more global” than what we call “global”.
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Levels of analysis

• here: three levels where to apply code analysis / optimizations
1. local: per basic block (block-level)
2. global: per function body/intra-procedural CFG
3. inter-procedural: really global, whole-program analysis

• the “more global”, the more costly the analysis and, especially the optimization (if done at all)

Loops in CFGs

• loop optimization: “loops” are thankful places for optimizations
• important for analysis to detect loops (in the cfg)
• importance of loop discovery: not too important any longer in modern languages.

Loops in a CFG vs. graph cycles

• concept of loops in CFGs not identical with cycles in a graph
• all loops are graph cycles but not vice versa

• intuitively: loops are cycles originating from source-level looping constructs (“while”)
• goto’s may lead to non-loop cycles in the CFG
• importance of loops: loops are “well-behaved” when considering certain optimizations/code trans-

formations (goto’s can destroy that. . . )

Cycles in a graph are well-known. The definition of loops here, while closely related, is not identical with
that. So, loop-detection is not the same as cycle-detection. Otherwise there’d be no much point discussing
it, since cycle detection in graphs is well known, for instance covered in standard algorithms and data
structures courses like INF2220/IN2010.

Loops are considered for specific graphs, namely CFGs. They are those kinds of cycles which come from
high-level looping constructs (while, for, repeat-until).

Loops in CFGs: definition

• remember: strongly connected components

Loop

A loop L in a CFG is a collection of nodes s.t.:

• strongly connected component (with edges completely in L)
• 1 (unique) entry node of L, i.e. no node in L has an incoming edge3 from outside the loop except

the entry

• often additional assumption/condition: “root” node of a CFG (there’s only one) is not itself an entry
of a loop

3alternatively: general reachability.
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Loop

CFG

B0

B1

B2 B3

B4

B5

• Loops:
– {B3,B4}

– {B4,B3,B1,B5,B2}

• Non-loop:
– {B1,B2,B5}

• unique entry marked red

The additional assumption mentioned on the slide about the special role of the root node of a control
flow graph is reminiscent, for example of the condition we assumed for the start-symbol of context-free
grammars in the LR(0)-DFA construction: the start symbol must not be mentioned on the right-hand side
of any production (and if so, one simply added another start symbol S′). The reasons for the assumption
here is similar: assuming that the root node is not itself part of a loop is not a fundamental thing, it
just avoids (in some degenerate cases) a special case treatment. The assumption about the form of the
control-flow graph is sometime called “isolated entry”. A corresponding restrinction for the “end” of a
control-flow graph is “isolated exit”.

Loops as fertile ground for optimizations

while ( i < n ) { i ++; A[ i ] = 3∗k }

• possible optimizations
– move 3*k “out” of the loop
– put frequently used variables into registers while in the loop (like i)

• when moving out computation from the loop:
• put it “right in front of the loop”
⇒ add extra node/basic block in front of the entry of the loop4

4That’s one of the motivations for unique entry.
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Loop non-examples

Data flow analysis in general

• general analysis technique working on CFGs
• many concrete forms of analyses
• such analyses: basis for (many) optimizations
• data: info stored in memory/temporaries/registers etc.
• control:

– movement of the instruction pointer
– abstractly represented by the CFG

∗ inside elementary blocks: increment of the instruction pointer
∗ edges of the CFG: (conditional) jumps
∗ jumps together with RTE and calling convention

Data flowing from (a) to (b)

Given the control flow (normally as CFG): is it possible or is it guaranteed (“may” vs. “must” analysis)
that some “data” originating at one control-flow point (a) reaches control flow point (b).

Data flow as abstraction

• data flow analysis DFA: fundamental and important static analysis technique
• it’s impossible to decide statically if data from (a) actually “flows to” (b)
⇒ approximative (= abstraction)
• therefore: work on the CFG: if there is two options/outgoing edges: consider both
• Data-flow answers therefore approximatively

– if it’s possible that the data flows from (a) to (b)
– it’s neccessary or unavoidable that data flows from (a) to (b)

• for basic blocks: exact answers possible

Treatment of basic blocs

Basic blocks are “maximal” sequences of straight-line code. We encountered a treatment of straight-line
code also in the chapter about intermediate code generatation. The technique there was called static simu-
lation (or simple symbolic execution). Static simulation was done for basic blocks only and for the purpose
of translation. The translation of course needs to be exact, non-approximative. Symbolic evaluation also
exist (also for other purposes) in more general forms, especially also working on conditionals.
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In summary, the general message is: for SLC and basic blocks, exact analyses are possible, it’s for the
global analysis, when one (necessarily) resorts to overapproximation and abstraction.

Data flow analysis: Liveness

• prototypical / important data flow analysis
• especially important for register allocation

Basic question

When (at which control-flow point) can I be sure that I don’t need a specific variable (temporary, register)
any more?

• optimization: if sure that not needed in the future: register can be used otherwise

Live

A “variable” is live at a given control-flow point if there exists an execution starting from there (given the
level of abstraction), where the variable is used in the future.

Static liveness

The notion of liveness given in the slides correspond to static liveness (the notion that static liveness
analysis deals with). That is hidden in the condition “given the level of abstraction” for example, using
the given control-flow graph. A variable in a given concrete execution of a program is dynamically live if
in the future, it is still needed (or, for non-deterministic programs: if there exists a future, where it’s still
used. Dynamic liveness is undecidable, obviously.

Definitions and uses of variables

• talking about “variables”: also temporary variables are meant.
• basic notions underlying most data-flow analyses (including liveness analysis)
• here: def’s and uses of variables (or temporaries etc.)
• all data, including intermediate results) has to be stored somewhere, in variables, temporaries, etc.

Def’s and uses

• a “definition” of x = assignment to x (store to x)
• a “use” of x: read content of x (load x)

• variables can occur more than once, so

• a definition/use refers to instances or occurrences of variables (“use of x in line l ” or “use of x in
block b ”)

• same for liveness: “x is live here, but not there”
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Defs, uses, and liveness

CFG

0: x = v + w

. . .

2: a = x + c

3: x =u + v4: x = w

5: d = x + y

• x is “defined” (= assigned to) in 0, 3, and 4
• u is live “in” (= at the end of) block 2, as it may be used in 3
• a non-live variable at some point: “dead”, which means: the corresponding memory can be reclaimed
• note: here, liveness across block-boundaries = “global” (but blocks contain only one instruction

here)

Def-use or use-def analysis

• use-def: given a “use”: determine all possible “definitions”
• def-use: given a “def”: determine all possible “uses”
• for straight-line-code/inside one basic block

– deterministic: each line has has exactly one place where a given variable has been assigned to
last (or else not assigned to in the block). Equivalently for uses.

• for whole CFG:
– approximative (“may be used in the future”)
– more advanced techiques (caused by presence of loops/cycles)

• def-use analysis:
– closely connected to liveness analysis (basically the same)
– prototypical data-flow question (same for use-def analysis), related to many data-flow analyses

(but not all)

Side-remark: SSA

Side remark: Static single-assignment (SSA) format:

• at most one assignment per variable.

• “definition” (place of assignment) for each variable thus clear from its name

Calculation of def/uses (or liveness . . . )

• three levels of complication
1. inside basic block
2. branching (but no loops)
3. Loops
4. [even more complex: inter-procedural analysis]
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For SLC/inside basic block

• deterministic result
• simple “one-pass” treatment enough
• similar to “static simulation”
• [Remember also AG’s]

For whole CFG

• iterative algo needed
• dealing with non-determinism: over-approximation
• “closure” algorithms, similar to the way e.g., dealing with first and follow sets
• = fix-point algorithms

Inside one block: optimizing use of temporaries

• simple setting: intra-block analysis & optimization, only
• temporaries:

– symbolic representations to hold intermediate results
– generated on request, assuming unbounded numbers
– intention: use registers

• limited about of register available (platform dependent)

Assumption about temps (here)

• temp’s don’t transfer data across blocks (/= program var’s)
⇒ temp’s dead at the beginning and at the end of a block

• but: variables have to be assumed live at the end of a block (block-local analysis, only)

At this point, one can check one’s undestanding: why is it that the variables are assumed live (as opposed
to assumed dead, or perhaps assumed a status “I-don’t-know”)?

Intra-block liveness

Code

t1 := a − b
t2 := t1 ∗ a
a := t1 ∗ t2
t1 := t1 − c
a := t1 ∗ a

• neither temp’s nor vars in the example are “single assignment”,
• but first occurrence of a temp in a block: a definition (but for temps it would often be the case,

anyhow)
• let’s call operand: variables or temp’s
• next use of an operand:
• uses of operands: on the rhs’s, definitions on the lhs’s
• not good enough to say “t1 is live in line 4” (why?)
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Note: the 3AIC may allow also literal constants as operator arguments; they don’t play a role right now.

In the following, the “next-uses” of operands and variables are arranged in a graph-like manner. As we
are treating straight-line code, there are no cycles in that graph. In other words it’s an acyclic graph.
That form of graph is also known as DAG: directed acyclic graph. NB: the graph on the next slides don’t
use “arrows” (as would be common in directed graphs. Being acyclic, the is only one direction here,
that’s from bottom to top. The incoming edges indicate the dependencies of an intermediate result on
it’s operands. Since we are dealing with 3AC, there are two operands (or less), which means, nodes have
typically 2 incoming edges (from below). The nodes are labelled by the operator as well as the target
memory location (variable or temporary).

The DAG, reading it from bottom to top, represents the “next-use” for each variable/temporary. As
mentioned, each node has at most 2 incoming edges (an in-degree of 2). Since a variable may have more
than 2 next uses, the out-degree may well arbitrarily large. In the example, t1 is used for instance, 3 times
at some point in the code.

DAG of the block

DAG

∗

∗ −

∗

−

a0 b0 c0

a

a t1

t2

t1

Text

• no linear order (as in code), only partial order
• the next use: meaningless
• but: all “next” uses visible (if any) as “edges upwards”
• node = occurrences of a variable
• e.g.: the “lower node” for “defining”assigning to t1 has three uses
• different “versions” (instances) of t1

DAG / SA

SA = “single assignment”

• indexing different “versions” of right-hand sides
• often: temporaries generated as single-assignment already
• cf. also constraints + remember AGs
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∗

∗ −

∗

−

a0 b0 c0

a2

a1 t11

t02

t01

Intra-block liveness: idea of algo

Picture

• liveness-status of an operand: different from lhs vs. rhs in a given instruction
• informal definition: an operand is live at some occurrence, if it’s used some place in the future

consider statement x1 ∶= x2 op x3

• A variable x is live at the beginning of x1 ∶= x2 op x3, if
1. if x is x2 or x3, or
2. if x live at its end, if x and x1 are different variables

• A variable x is live at the end of an instruction,
– if it’s live at beginning of the next instruction
– if no next instruction

∗ temp’s are dead
∗ user-level variables are (assumed) live

Note: the graph on the top left-hand side of the slide is not the same as the DAG shown earlier. Maybe
the graphical represention here is not too usefule. It indicates the next uses of a variable, if any. It also
indicates if a variable is not used in the future (but the special “ground symbol”). However, the start-point
of the edges are not all really helpful in getting an overview. In the first line: the arrow from t1 to t1 in
the second line rougly corresponds to the edge in the DAG (as it goes from a definition (of t1) its next use.
However, the edge from a in the first line to a in the second line is less motivated: it would correspond to
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an edge from a “use” to a “next use”, but normally one is not interested in that too much. Therefore, one
should not “overinterpret” the graph in the figure too much.

A better representation would be, for each line, pointers from all variables to next uses, not just from
variables that happen to be mentioned in a line.

Liveness

Previous “inductive” definition

expresses liveness status of variables before a statement dependent on the liveness status of variables after
a statement (and the variables used in the statement)

• core of a straightforward iterative algo
• simple backward scan
• the algo we sketch:

– not just boolean info (live = yes/no), instead:
– operand live?

∗ yes, and with next use inside is block (and indicate instruction where)
∗ yes, but with no use inside this block
∗ not live

– even more info: not just that but indicate, where’s the next use

Backward scan and SLC

Remember in connection with the given algo for intra-block analysis, i.e. analysis for straight-line code.
In the presence of loops/analysing a complete CFG, a simple 1-pass does not suffice. More advanced
techniques (“multiple-scans”) are needed then, which may amount to fixpoint calculations. Doing fixpoint
calculations increases the complexity of the problem (And the needed theoretical background). As a further
side remark: earlier in this chapter we elaborated on the fine line that separates cycles in a graph from the
notion of loops, where loops are a particular well-structured from of cycles. Without going into details: if
one is dealing with cfg’s which are guaranteed to contain only loops (but not proper more general cycles),
one can apply special techniques or strategies to deal with the cycles. In particular, one can attack the
loops “inside out”. That strategy is possible, as loops (as opposed to cycles) appear “nested”. Attacking
the loops in that manner is more efficient than iterating though the graph without taking the nesting
structure as compass.

Algo: dead or alive (binary info only)

// −−−−− i n i t i a l i s e T −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for a l l e n t r i e s : T[ i , x ] := D
except : for a l l v a r i a b l e s a // but not temps

T[ n , a ] := L ,
//−−−−−−− backward pass −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i n s t r u c t i o n i = n−1 down to 0
l e t c u r r e n t i n s t r u c t i o n at i +1: $x := y \ op\ z$ ;

T[ i , x ] := D // note o r d e r ; x can `` equal ' ' y or z
T[ i , y ] := L
T[ i , z ] := L

end

• Data structure T : table, mapping for each line/instruction i and variable: boolean status of
“live”/“dead”

• represents liveness status per variable at the end (i.e. rhs) of that line
• basic block: n instructions, from 1 until n, where “line 0” represents the “sentry” imaginary line

“before” the first line (no instruction in line 0)
• backward scan through instructions/lines from n to 0



10 Code generation
10.3 Basic blocks and control-flow graphs 353

Algo′: dead or else: alive with next use

• More refined information
• not just binary “dead-or-alive” but next-use info
⇒ three kinds of information

1. Dead: D
2. Live:

– with local line number of next use: L(n)
– potential use of outside local basic block L(�)

• otherwise: basically the same algo

// −−−−− i n i t i a l i s e T −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for a l l e n t r i e s : T[ i , x ] := $\ l i v e n e x t d e a d n o n l o c a l $
except : for a l l v a r i a b l e s a // but not temps

T[ n , a ] := $\ l i v e n e x t n o n l o c a l $ ,
//−−−−−−− backward pass −−−−−−−−−−−−−−−−−−−−−−−−−−−−

for i n s t r u c t i o n i = n−1 down to 0
l e t c u r r e n t i n s t r u c t i o n at i +1: $x := y \ op\ z$ ;

T[ i , x ] := $\ l i v e n e x t d e a d l o c a l $ // note o r d e r ; x can `` equal ' ' y or z
T[ i , y ] := $\ l i v e n e x t l o c a l { i +1}$
T[ i , z ] := $\ l i v e n e x t l o c a l { i +1}$

end

Run of the algo′

Run/result of the algo

line a b c t1 t2
[0] L(1) L(1) L(4) L(2) D
1 L(2) L(�) L(4) L(2) D
2 D L(�) L(4) L(3) L(3)
3 L(5) L(�) L(4) L(4) D
4 L(5) L(�) L(�) L(5) D
5 L(�) L(�) L(�) D D

Picture

t1 := a − b
t2 := t1 ∗ a
a := t1 ∗ t2
t1 := t1 − c
a := t1 ∗ a
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In the table, the entries marked read indicate where “changes” occur; remember that the table is filled
from bottom to top, we are doing a backward scan.

Liveness algo remarks

• here: T data structure traces (L/D) status per variable × “line”
• in the remarks in the notat:

– alternatively: store liveness-status per variable only
– works as well for one-pass analyses (but only without loops)

• this version here: corresponds better to global analysis: 1 line can be seen as one small basic block

10.4 Code generation algo

Simple code generation algo

• simple algo: intra-block code generation
• core problem: register use
• register allocation & assignment5

• hold calculated values in registers longest possible
• intra-block only ⇒ at exit:

– all variables stored back to main memory
– all temps assumed “lost”

• remember: assumptions in the intra-block liveness analysis

Limitations of the code generation

• local intra block:
– no analysis across blocks
– no procedure calls, etc.

• no complex data structures
– arrays
– pointers
– . . .

5Some distinguish register allocation: “should the data be held in register (and how long)” vs. register
assignment: “which of the available registers to use for that”
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some limitations on how the algo itself works for one block

• for read-only variables: never put in registers, even if variable is repeatedly read
– algo works only with the temps/variables given and does not come up with new ones
– for instance: DAGs could help

• no semantics considered
– like commutativity: a + b equals b + a

The limitation that read-only variables are not put into registers is not a “design-goal”, it’s a not so
smart side-effect on the way the algo works. The algo is a quite straightforward way of making use of
registers which works block-local. Due to its simplicity, the treatment of read-only variables leaves room for
improvement. The code generation makes use of liveness information, if available. In case one has invested
in some global liveness analysis (as opposed to a local one), the code generation could profit from that by
getting more efficient. But its correctness does not rely on that. Even without liveness information, it is
correct, by assuming conservatively or defensively, that all variables are always live (which is the worst-case
assumption).

Purpose and “signature” of the getreg function

• one core of the code generation algo
• simple code-generation here ⇒ simple getreg

getreg function

available: liveness/next-use info

Input: TAIC-instruction x ∶= y op z

Output: return location where x is to be stored

• location: register (if possible) or memory location

Coge generation invariant

it should go without saying . . . :

Basic safety invariant

At each point, “live” variables (with or without next use in the current block) must exist in at least one
location

• another invariant: the location returned by getreg: the one where the rhs of a 3AIC assignment ends
up

Register and address descriptors

• code generation/getreg: keep track of
1. register contents
2. addresses for names
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Register descriptor

• tracking current “content” of reg’s (if any)
• consulted when new reg needed
• as said: at block entry, assume all regs unused

Address descriptor

• tracking location(s) where current value of name can be found
• possible locations: register, stack location, main memory
• > 1 location possible (but not due to overapproximation, exact tracking)

By saying that the register descriptor is needed to track the content of a register, it’s not meant the actual
value (which will only be known at run-time). It’s rather keeping track of the following information: the
content of the register correspond to the (current content of the following) variable(s). Note: there might
be situations where a register corresponds to more than one variable.

Code generation algo for x ∶= y op z

1. determine location (preferably register) for result

l = g e t r e g ( ``x := y op z ' ' )

2. make sure, that the value of y is in l :
• consult address descriptor for y ⇒ current locations ly for y
• choose the best location ly from those (preferably register)
• if value of y not in l, generate

MOV $l_y$ , l

3. generate

OP $l_z$ , l // $l_z$ : a c u r r e n t l o c a t i o n o f z ( p r e f e r reg ' s )

• update address descriptor [x↦∪ l]
• if l is a reg: update reg descriptor l ↦ x

4. exploit liveness/next use info: update register descriptors

Skeleton code generation algo for x ∶= y op z

$ l $ = getreg ( ` `x:= y op z ' ' ) // t a r g e t l o c a t i o n for x
i f $ l \ n o t i n \ l o c s o f {y}{\ t a b l e a d }$ then l e t $l_y \ in \ l o c s o f {y}{\ t a b l e a d }$ ) in emit ( "MOV $l_y , \ l $ " ) ;
l e t $l_z \ in \ l o c s o f { z }{\ t a b l e a d }$ in emit ( "OP $l_z , l $ " ) ;

• “skeleton”
– non-deterministic: we ignored how to choose lz and ly
– we ignore book-keeping in the name and address descriptor tables (⇒ step 4 also missing)
– details of getreg hidden.
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Non-deterministic code generation algo for x ∶= y op z

l = getreg ( ` `x:= y op z ' ' ) // g e n e r a t e t a r g e t l o c a t i o n for x
i f $ l \ n o t i n \ l o c s o f {y}{\ t a b l e a d }$
then l e t $l_y \ in \ l o c s o f {y}{\ t a b l e a d }$ ) // p i c k a l o c a t i o n for y

in emit (MOV $l_y$ , l )
e l s e skip ;
l e t $l_z \ in \ l o c s o f { z }{\ t a b l e a d }$ ) in emit ( ` `OP $l_z$ , l ' ' ) ;
$\ t a b l e a d := \ t a b l e a d \ s e t a d d t o {x}{ l }$ ;
i f l i s a r e g i s t e r
then $\ t a b l e r d := \ t a b l e r d \ s e t t o { l }{x}$

Exploit liveness/next use info: recycling registers

• register descriptors: don’t update themselves during code generation
• once set (e.g. as R0 ↦ t), the info stays, unless reset
• thus in step 4 for z ∶= x op y:

Code generation algo for x ∶= y op z

$ l $ = getreg ( " i : x := y op z " ) // $ i $ for i n s t r u c t i o n s l i n e number/ l a b e l
i f $ l \ n o t i n \ l o c s o f {y}{\ t a b l e a d }$
then l e t $l_y$ = best ( $\ l o c s o f {y}{\ t a b l e a d }$ )

in emit ( " $\ red {\ mathbf{MOV}\ l_y , \ l }$ " )
e l s e skip ;
l e t $l_z$ = best ( $\ l o c s o f { z }{\ t a b l e a d }$ )
in emit ( " $\ red {\ mathbf{OP}\ l_z , l }$ " ) ;
$\ t a b l e a d := \ t a b l e a d \ s e t w i t h o u t t o {\_}{ l }$ ;
$\ t a b l e a d := \ t a b l e a d \ s e t t o {x}{ l }$ ;
$\ t a b l e r d := \ t a b l e r d \ s e t t o { l }{x}$ ;

i f $\ l n o t \ t a b l e l i v e a t { i }{y}$ and $\ t a b l e a d ( y ) = r$ then $\ t a b l e r d := \ t a b l e r d \ s e t w i t h o u t t o { r }{y}$
i f $\ l n o t \ t a b l e l i v e a t { i }{ z}$ and $\ t a b l e a d ( z ) = r$ then $\ t a b l e r d := \ t a b l e r d \ s e t w i t h o u t t o { r }{ z }$

To exploit liveness info by recycling reg’s

if y and/or z are currently

• not live and are
• in registers,

⇒ “wipe” the info from the corresponding register descriptors

• side remark: for address descriptor
– no such “wipe” needed, because it won’t make a difference (y and/or z are not-live anyhow)
– their address descriptor wont’ be consulted further in the block

getreg algo: x ∶= y op z

• goal: return a location for x
• basically: check possibilities of register uses,
• starting with the “cheapest” option
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Do the following steps, in that order

1. in place: if x is in a register already (and if that’s fine otherwise), then return the register

2. new register: if there’s an unsused register: return that

3. purge filled register: choose more or less cleverly a filled register and save its content, if needed, and
return that register

4. use main memory: if all else fails

getreg algo: x ∶= y op z in more details

1. if
• y in register R
• R holds no alternative names
• y is not live and has no next use after the 3AIC instruction
• ⇒ return R

2. else: if there is an empty register R′: return R′

3. else: if
• x has a next use [or operator requires a register] ⇒

– find an occupied register R
– store R into M if needed (MOV R, M))
– don’t forget to update M ’s address descriptor, if needed
– return R

4. else: x not used in the block or no suituable occupied register can be found
• return x as location L

• choice of purged register: heuristics
• remember (for step 3): registers may contain value for > 1 variable ⇒ multiple MOV’s

Sample TAIC

d := (a-b) + (a-c) + (a-c)

t := a − b
u := a − c
v := t + u
d := v + u

line a b c d t u v

[0] L(1) L(1) L(2) D D D D
1 L(2) L(�) L(2) D L(3) D D
2 L(�) L(�) L(�) D L(3) L(3) D
3 L(�) L(�) L(�) D D L(4) L(4)
4 L(�) L(�) L(�) L(�) D D D
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Code sequence

Code sequence

• address descr’s: “home position” not explictely needed.
• e.g. variable a always to be found “at a ”, as indicated in line “0”.
• in the table: only changes (from top to bottom) indicated
• after line 3:

– t dead
– t resides in R0 (and nothing else in R0)
→ reuse R0

• Remark: info in [brackets]: “ephemeral”

10.5 Ignore for now

10.6 Global analysis

10.7 From “local” to “global” data flow analysis

• data stored in variables, and “flows from definitions to uses”
• liveness analysis

– one prototypical (and important) data flow analysis
– so far: intra-block = straight-line code

• related to
– def-use analysis: given a “definition” of a variable at some place, where it is (potentially) used
– use-def : (the inverse question, “reaching definitions”

• other similar questions:
– has a value of an expression been calculated before (“available expressions”)
– will an expression be used in all possible branches (“very busy expressions”)

10.8 Global data flow analysis

• block-local
– block-local analysis (here liveness): exact information possible
– block-local liveness: 1 backward scan
– important use of liveness: register allocation, temporaries typically don’t survive blocks anyway

• global: working on complete CFG
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2 complications

• branching: non-determinism, unclear which branch is taken
• loops in the program (loops/cycles in the graph): simple one pass through the graph does not cut

it any longer

• exact answers no longer possible (undecidable)
⇒ work with safe approximations
• this is: general characteristic of DFA

10.9 Generalizing block-local liveness analysis

• assumptions for block-local analysis
– all program variables (assumed) live at the end of each basic block
– all temps are assumed dead there.

• now: we do better, info across blocks

at the end of each block:

which variables may be used in subsequent block(s).

• now: re-use of temporaries (and thus corresponding registers) across blocks possible
• remember local liveness algo: determined liveness status per var/temp at the end of each “line/in-

struction”

We said that “now” a re-use of temporaries is possible. That is in contrast to the block local analysis we did
earlier, before the code generation. Since we had a local analysis only, we had to work with assumptions
converning the variables and temporaries at the end of each block, and the assumptions were “worst-case”,
to be on the safe side. Assuming variables live, even if actually they are not, is safe, the opposite may be
unsafe. For temporaries, we assumed “deadness”. So the code generator therefore, under this assumption,
must not reuse temporaries across blocks.

One might also make a parallel to the “local” liveness algorithm from before. The problem to be solved
for liveness is to determined the status for each variable at the end of each block. In the local case, the
question was analogous, but for the “end of each line”. For sake of making a parallel one could consider
each line as individual block. Actually, the global analysis would give identical results also there. The
fact that one “lumps together” maximal sequences of straight-line code into the so-called basic blocks and
thereby distinguishing between local and global levels is a matter of efficiency, not a principle, theoretical
distinction. Remember that basic blocks can be treated in one single path, whereas the whole control-flow
graph cannot: do to the possibility of loops or cycles there, one will have to treat “members” of such
a loop potentially more than one (later we will see the corresponding algorithm). So, before addressing
the global level with its loops, its a good idea to “pre-calculate” the data-flow situation per block, where
such treatment requies one pass for each individual block to get an exact solution. That avoid potential
line-by-line recomputation in case a basic block neeeds to be treated multiple times.

10.10 Connecting blocks in the CFG: inLive and outLive

• CFG:
– pretty conventional graph (nodes and edges, often designated start and end node)
– nodes = basic blocks = contain straight-line code (here 3AIC)
– being conventional graphs:

∗ conventional representations possible
∗ E.g. nodes with lists/sets/collections of immediate successor nodes plus immediate prede-

cessor nodes
• remember: local liveness status
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– can be different before and after one single instruction
– liveness status before expressed as dependent on status after
⇒ backward scan

• Now per block: inLive and outLive

Loops vs. cycles

As a side remark. Earlier we remarked that loops are closely related to cycles in a graph, but not 100% the
same. Some forms of analyses resp. algos assume that the only cycles in the graph are loops. However, the
techniques presented here work generally, i.e., the worklist algorithm in the form presented here works just
fine also in the presence of general cycles. If one had no cycles, no loops. special strategies or variations
of the worklist algo could exploit that to achieve better efficiency. We don’t pursue that issue here. In
that connection it might also be mentioned: if one had a program without loops, the best strategy would
be backwards. If one had straight-line code (no loops and no branching), the algo corresponds directly to
“local” liveness, explained earlier.

10.11 inLive and outLive

• tracing / approximating set of live variables6 at the beginning and end per basic block
• inLive of a block: depends on

– outLive of that block and
– the SLC inside that block

• outLive of a block: depends on inLive of the successor blocks

Approximation: To err on the safe side

Judging a variable (statically) live: always safe. Judging wrongly a variable dead (which actually will be
used): unsafe

• goal: smallest (but safe) possible sets for outLive (and inLive)

6To stress “approximation”: inLive and outLive contain sets of statically live variables. If those are
dynamically live or not is undecidable.
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10.12 Example: Faculty CFG

CFG picture

Explanation

• inLive and outLive
• picture shows arrows as successor nodes
• needed predecessor nodes (reverse arrows)

node/block predecessors
B1 ∅

B2 {B1}

B3 {B2,B3}

B4 {B3}

B5 {B1,B4}

10.13 Block local info for global liveness/data flow analysis

• 1 CFG per procedure/function/method
• as for SLC: algo works backwards
• for each block: underlying block-local liveness analysis
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3-valued block local status per variable

result of block-local live variable analysis

1. locally live on entry: variable used (before overwritten or not)
2. locally dead on entry: variable overwritten (before used or not)
3. status not locally determined: variable neither assigned to nor read locally

• for efficiency: precompute this info, before starting the global iteration ⇒ avoid recomputation for
blocks in loops

Precomputation

We mentioned that, for efficiency, it’s good to precompute the local data flow per local block. In the
smallish examples we look at in the lecture or exercises etc.: we don’t pre-compute, we often do it simply
on-the-fly by “looking at” the blocks’ of SLC.

10.14 Global DFA as iterative “completion algorithm”

• different names for the general approach
– closure algorithm, saturation algo
– fixpoint iteration

• basically: a big loop with
– iterating a step approaching an intended solution by making current approximation of the

solution larger
– until the solution stabilizes

• similar (for example): calculation of first- and follow-sets
• often: realized as worklist algo

– named after central data-structure containing the “work-still-to-be-done”
– here possible: worklist containing nodes untreated wrt. liveness analysis (or DFA in general)

10.15 Example

a := 5
L1 : x := 8

y := a + x
if_true x=0 g o t o L4
z := a + x // B3
a := y + z
i f _ f a l s e a=0 g o t o L1
a := a + 1 // B2
y := 3 + x

L5 a := x + y
r e s u l t := a + z
return r e s u l t // B6

L4 : a := y + 8
y := 3
g o t o L5
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10.16 CFG: initialization

Picture

• inLive and outLive: initialized to ∅ everywere
• note: start with (most) unsafe estimation
• extra (return) node
• but: analysis here local per procedure, only

10.17 Iterative algo

General schema

Initialization start with the “minimal” estimation (∅ everywhere)

Loop pick one node & update (= enlarge) liveness estimation in connection with that node

Until finish upon stabilization (= no further enlargement)

• order of treatment of nodes: in princple arbitrary7

• in tendency: following edges backwards
• comparison: for linear graphs (like inside a block):

– no repeat-until-stabilize loop needed
– 1 simple backward scan enough

7There may be more efficient and less efficient orders of treatment.
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10.18 Liveness: run

10.19 Liveness example: remarks

• the shown traversal strategy is (cleverly) backwards
• example resp. example run simplistic:
• the loop (and the choice of “evaluation” order):

“harmless loop”

after having updated the outLive info for B1 following the edge from B3 to B1 backwards (propagating
flow from B1 back to B3) does not increase the current solution for B3

• no need (in this particular order) for continuing the iterative search for stabilization
• in other examples: loop iteration cannot be avoided
• note also: end result (after stabilization) independent from evaluation order! (only some

strategies may stabilize faster. . . )

In the script, the figure shows the end-result of the global liveness analysis. In the slides, there is a “slide-
show” which shows step-by-step how the liveness-information propagates (= “flows”) through the graph.
These step-by-step overlays, also for other examples, are not reproduced in the script.
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10.20 Another, more interesting, example

10.21 Example remarks

• loop: this time leads to updating estimation more than once
• evaluation order not chosen ideally

10.22 Precomputing the block-local “liveness effects”

• precomputation of the relevant info: efficiency
• traditionally: represented as kill and generate information
• here (for liveness)

1. kill: variable instances, which are overwritten
2. generate: variables used in the block (before overwritten)
3. rests: all other variables won’t change their status

Constraint per basic block (transfer function)

inLive = outLive/kill(B) ∪ generate(B)

• note:
– order of kill and generate in above’s equation
– a variable killed in a block may be “revived” in a block

• simplest (one line) example: x := x +1

Order of kill and generate

As just remarked, one should keep in mind the oder of kill and generate in the definition of transfer
functions. In principle, one could also arrange the opposite order (interpreting kill and generatate slightly
differently). One can also define the so-called transfer function directly, without splitting into kill and
generate (but for many (but not all) such a separation in kill and generate functionality is possible and
convenient to do). Indeed using transfer functions (and kill and generate) works for many other data flow
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analyses as well, not just liveness analysis. Therefore, understanding liveness analysis basically amounts
to having understood data flow analysis.

10.23 Example once again: kill and gen
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