

1

 Recitation lecture: problem set 5

2

Correction about keys

• You were told earlier to use symbol name opt. with
some mangling as keys in symbol table, newest
skeleton uses sequence number as key in local table
– Other solutions are not wrong, just more convoluted
– Hopefully, this better explains the motivation for adding sequence

numbers! (sorry..)

3

PS 5: Code generation (pt 1)

• Code generation without control structures
– Functions
– Print statements
– Arithmetic expressions
– Assignment statements
– Global string table
– Global and local variables

• If, while are implemented in PS 6
• New .vsl files for ps 5 should generate an executable

program.

4

PS 5: Code generation (pt 1)

• Tasks can still be be done on M1 Macbooks, but you
won’t be able to assemble and run your generated
code
– Use remote machine: https://i.ntnu.no/wiki/-/wiki/English/SSH
– QEMU emulator VM
– Rosetta2

• If you haven’t used them yet, two valuable tools for
debugging C programs (and your generated asm)
– GDB for stepping and breakpoints
– Valgrind for memory checks and traces

https://i.ntnu.no/wiki/-/wiki/English/SSH
https://www.qemu.org/docs/master/about/build-platforms.html#linux-os-macos-freebsd-netbsd-openbsd

5

x86-64 (x64) assembly

• 16r egisters: rax, rbx, rcx, rdx, rdi, rsi, rbp (base pointer),
rsp (stack pointer), r8-15

• General syntax: op src, dest
– Arithmetic operations resemble a stack machine: source operand applied to

value in destination

• Comments: GAS (GNU assembler) accepts # line
comments and /* */ block comments.
– nasm uses semicolon, GCC accepts double slashes if invoked with the

preprocessor (*.S or *.sx)
• Helpful x64 cheatsheet, advice you to keep it available

– I heavily rely on this myself, so I can’t answer of the top
of my head, this is probably where I’ll review first anyway

https://gcc.gnu.org/onlinedocs/gcc/Overall-Options.html
https://cs.brown.edu/courses/cs033/docs/guides/x64_cheatsheet.pdf

6

x64 assembly

• Addressing modes
– Register: %R
– Immediate value: $N (suffix 0x for hex, 0b for for binary)
– Memory: (%R) (%R hold memory address: mem[reg[R]])

• Displacement: D(%R) (mem[reg[R]+D]
• General form: D(Rb, Ri, S) (mem[reg[Rb] + S * reg[Ri])

7

x64 assembly

• Caution: Many online examples use the “nasm”
assembler. This one uses Intel syntax, which is
incompatible with Unix (AT&T) syntax, used by gcc
and clang
– Notably: Order of parameters reversed

8

x64 assembly

• Sections
– text: Contains our program code
– bss: Block Starting Symbol, contains statically allocated,

uninitialized data (global variables). Saves object file space as
opposed to data section

– data: Pre-initialized data section
– rodata: Read-only data, where we will put our strings

9

• We have our global string_list
• Use format strings (printf) as usual
• Create a data section declaring all strings
• Also define strout, intout and errout
• Directives .asciz and .string are synonymous

Code gen: string data

func hello() begin
 print “Hello”, “World!”
end

.data

.strout: .asciz “%s”

.intout: .asciz “%ld”

.errout: .asciz “Wrong number of arguments

.STR0: .asciz “Hello”

.STR1: .asciz “World!”

...

10

• Like with strings we declare them in a separate
section: .bss

• All values are 64 bit integers, entire section can be 8
bytes aligned: .align 8

• Variables are unitiliatized, only their name need to be
declared: .my_global_var0:

Code gen: global variables

11

Code gen: printing

• Special case of calling a std library function, printf
movq $.strout, %rdi
movq $.STR0, %rsi
call printf
movq $.STR1, %rsi
call printf
movq $’\n’, %rdi
call putchar // just add that newline

func hello() begin
 print “Hello”, “World!”
end

12

Code gen: expressions

• For simplicity, we will treat the processor as a stack
machine, pushing all intermediate results to the stack

• Again, traverse the AST, writing out correct
instructions for each node

• Generally for expressions:
– Generate lhs of expression, push to stack
– Generate rhs of expression
– Pop from stack to an unused register (e.g. r10)
– Perform operation (e.g. add %r10, %rax)

13

• Preparing parameters
– First 6 parameters go in registers: %rdi, %rsi, %rdx, %rcx, %r8, %r9
– Subsequent parameters are pushed onto the stack

// call foo(1, 15)
movq $1, %rdi
movq $15, %rsi
call foo // Push return address and jump to label foo

– .

• Caller saved registers
– %rax, %rcx, %rdx, %rdi, %rsi, %rsp and %r8-r11 must be pushed to the stack if their

value are needed after the call (safe side: always save)
– Simplification: most are used for arguments, the rest aren’t used.

• Name mangling (for real this time)
– Avoid collisions with internal names. generate_main generates a main function, but

what if you called your function main as well?
– main becomes e.g. _main, _vsl_main or _lots_of_mangling_why_not_main

Code gen: calling functions

14

Code gen: entering function

• Push %rbp, caller’s BP, move SP to BP
pushq %rbp
movq %rsp, %rbp

• Push arguments to stack
– Stack needs to be padded for 16-bytes alignment. Push a zero if

we have an odd number of arguments

15

Code gen: exiting function

• Clear the stack, restore caller SP
– We saved caller’s SP to %rbp, now return it

• Restore callee saved registers
– If they were used (probably not

• Return value saved in rax

16

Code gen summary

• Declare strings
• Declare global variables
• Declare functions
• Generate function bodies handling all node types

except IF, WHILE, NULL, RELATION

17

Running our program

• gcc -no-pie prog.S

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

