
TDT4205 Problem Set 5

Answers are to be submitted via Blackboard by April 3rd.

1 Assembly programming

The lyrics of the counting song ”10 Green Bottles” follow the pattern
10 green bottles hanging on the wall,
10 green bottles hanging on the wall,

and if 1 green bottle should accidentally fall,
there’d be 9 green bottles hanging on the wall.

It has a total of ten similar verses which count down the total, and ends
when the last line reaches 0. Write an x86 64 assembly program which prints
the full lyrics to this song.

2 Code Generation Part I

Having created a symbol table, you are now ready to start the fun part where
we get an executable result, the code generation. For the first part, you will
implement most functionality except for control structures, which is enough to
compile and run the example programs in the ps5 folder. This cheatsheet should
help you on the way.

2.1 String table

In the previous assignment, you extracted the strings into string list. Now,
finish the generate string table function by writing out symbol names and
static data declaration. Make sure to select easily retrievable symbol names,
e.g. .STRidx.

.data

.intout: .asciz "%ld "

.strout: .asciz "%s "

.errout: .asciz "Wrong number of arguments"

.STR0: .asciz "First string"

.STR1: .asciz "Hello, World!"

1

2.2 Global variables

Next, write out declarations of all global variables. This is done in almost
the same way as the string table, except that the variables are uninitialized
and thus should be placed in a .bss (block starting symbol) section. Since all
variables are 64 bit, we align them by adding the keyword .align 8. After
you have implemented the function generate global variables, the complete
table should look something like this:

.bss

.align 8

.global_var0:

.global_var1:

2.3 Functions

The last task in global scope is to add functions. Entering a function has some
common tasks that you will implement in the function generate function. As
with above, we use the function’s label to assign the entry point. Program code
is placed in the .text section, and also want to make the names global using
the line ’.global func name’.

Next, save the caller’s base pointer and stack pointer (which will be the
callee’s base pointer).

Last thing before starting the function code is pushing the arguments to the
stack. Remember that the stack needs to be 16 bytes aligned. We can solve this
by subtracting 8 from the stack pointer after pushing arguments if there is an
odd number of arguments.

A function entry should look something like this:

// func my_func (a, b, c)

.text

.global _my_func

my_func:

pushq %rbp // Save SP and BP

movq %rsp, %rbp

pushq %rdi // Push arguments to stack

pushq %rsi

pushq %rdx

subq $8, %rsp // Align, there were 3 args

2.4 Function body

With all global names set, we are ready to generate our functions.

2

2.4.1 Expressions

To keep it simple and avoid the problem of register allocation, we are going to
treat our machine as a stack machine. When computing expressions, compute
them one at the time using the %rax register, and push the intermediate result
to the stack. Then, when it is needed you pop it back off the stack.

a := 3 * (2 + b)

looks something like this:

movq $3, %rax // Load 3

pushq %rax // push l.h. of multiplication

movq $2, %rax // Load 2

pushq %rax // push l.h. of addition

movq ._b, %rax // Given b is a global variable

popq %r10 // pop l.h. (%r10 arbitrarily chosen)

addq %r10, %rax // Intermediate result 2 + b

popq %r10 // pop l.h.

addq %r10, %rax // Intermediate result 3*(2+b)

movq %rax, -0(%rbp) // Given a is the first parameter

2.4.2 Function calls

Implement function calls. When calling a function, the first six arguments are
passed by registers. The skeleton code provides an array record, containing
these registers in correct order. Any subsequent arguments are pushed to the
stack. Before that though, you need to push any caller-saved registers

Print statements can be translated into a sequence of printf system calls,
with one call per item in the PRINT statement’s list. Use the provided format
strings, strout and intout to properly format your print item. Pass the format
string to %rdi and the value to print to %rsi.

You should now be able to compile helloworld.vsl from PS 2.

2.4.3 Loading and storing

When an expression is resolved, its final value will be stored in the %rax register.
Now save it to the location of the symbol that is being assigned to. For global
variables we simply reference them by name. For parameters and local variables,
we need to calculate their address using the sequence number. Parameters start
at the base pointer, any parameters beyond 6 are store above the base pointer,
and local variables follow after the up to 6 first parameters. The table below
shows what the stack would look like for a function with 8 parameters.

3

seq name
6 parameter 7
7 parameter 8
- base pointer
0 parameter 1
1 parameter 2
. ...
5 parameter 6
8 local 1
9 local 2

2.4.4 Return statements

By convention, the return value is stored in the %rax register, which is where
we already have put the result that we want to return after resolving the return
expression. What’s left is to restore the stack and base pointers and call return.

movq %rbp, %rsp

popq %rbp

ret

Note: VSL requires all functions to return a value, but most of the ex-
ample programs handed out earlier did not comply with this (they do now).
If we don’t want to require a return statement, e.g. in our main function,
the generate function function can be extended after generating the function
body to always move a zero to %rax and run the return code from above. Now,
if a function doesn’t return anything we make sure to properly exit it.

4

	Assembly programming
	Code Generation Part I
	String table
	Global variables
	Functions
	Function body
	Expressions
	Function calls
	Loading and storing
	Return statements

