

1

 Recitation lecture: problem set 4

Name, title of the presentation

2

Intro to PS 4: Symbol tables

• Organize identifiers and strings so that we can
resolve them to memory locations in the finished
program

• Variable names and function names are text strings,
we need to index a table based on those

• Skeleton includes a hash table implementation,
tlhash

3

Hash tables in C: tlhash

• The standard library has a hash table
implementation, but its reception has been mixed.

• The provided tlhash.[h|c] (typeless hash) is a simple
implementation

(You can make your own if you don’t like this
implementation, but it is not required; implementing
hash tables is a topic for another course)

4

Hash tables in C: tlhash

• tlhash interface to handle tlhash_t struct
– Initialize
– Finalize
– Insert
– Lookup
– Remove

– Obtain all keys

– Obtain all values

• Keys and values are just void pointers, managing what
type they point to is for the calling program to care about

5

Hash tables in C: tlhash

• tlhash interface to handle tlhash_t struct
– Initialize
– Finalize

– Insert
– Lookup
– Remove

– Obtain all keys
– Obtain all values

• Keys and values are just void pointers, managing what type they
point to is for the calling program to care about

• Example usage in ir.c. OBS: Not relevant for the actual solving of
the assignment, only intended to show usage

(Library) function(s) of the week™

6

symbol_t struct

• Entry in hash table, and links to the entry field in AST
nodes.

7

symbol_t struct

• Name : Name of symbol

• Type : Function, global var, parameter or local var

• Node : Root node of function
• Seq : Sequencing number (not for global vars)
• Param : Parameter count for functions
• Locals : Local symbol table for functions

8

TODO: Globals and functions

• Main function calls create_symbol_table, your origin for the
following tasks

• Skeleton declares a global symbol table: global_names
• Fill with symbol_t structs for functions and gobal vars

(implement find_globals)
• Functions need their own name table, it can already be filled

with parameter names

• Functions also link to their tree node (so we can traverse a
function’s subtree, given its name)

• Number functions and parameters (seq)

9

TODO: Locals

• Traverse each function’s subtree, resolve names and
string within its scope (implement bind_names)

• Both entering declared names into its local table, and
linking used names to the symbol they represent

• Look up used identifiers first locally, then globally
• Create global index of string literals
• Sequence numbers should be assigned by the order

of appearance, parameters coming first

10

TODO: Print and destroy
symtab
• Implement print_symbol_table to display your table

• Lastly, free up all allocated memory (implement
destroy_symbol_table)

11

Global index of string literals

• String literals are static data and are used only once, in the
node representing them

• The node currently contains a pointer to the string at the data
element

• In code generation we want to write out all strings at once, so
– Add the pointer ti the global string_list
– Keep a count of strings: stringc
– Remember to grow the table as needed
– Replace the node’s data element with the list index of the string it used to hold

12

Global index of string literals

• This
print_statement

string_data string_data string_data

“foo” “bar” “baz”

13

Global index of string literals

• Becomes
print_statement

string_data string_data string_data

0 1 2

[0] “foo”
[1] “bar”
[2] “baz”

string_list

14

Local name tables

• In the end, we want them in a single table:
local #0: x
local #1: y
local #2: z
local #3: x
local #4: y

15

Local name tables for blocks

• Only temporarily
– While traversing the inner block, looking up “x” should result in the symtab entry

for local #3
– When exiting the block, we go back to expecting local #0 for “x”

• We can use a stack for temporary hash tables
– Push a new one when entering a block
– Insert locally declared names, make them point onwards to the real symtab

entry
– Look up names in a bottom-up fashion
– Pop temp table when exiting block

• Naming does not matter after linking is done, but number local
variables so that we can tell inner and outer symbols apart

16

Minor tips

• -h flag to show options. Newly added are
– -u : If you prefer the old tree_print over the student

contribution demonstrated on Piazza
– -s : Invokes print_symbol_table

• You are welcome to declare more internal helper
functions to keep your code from become one giant
and messy singleton function

17

Scores and such

• Full marks for successful run and correct sequencing

• Partial marks for an attempt, depending on how much has
been done and how much is working

• Zero (but approved) for handing in blank
– Encourage everyone to try everything, and worst case comment

some notes about what you would have done

• How much do they really count? 1/100 on PS4 is 1/1000 in
the course.
– You can’t numerically exclude yourself from getting an A by losing

points on this assignment alone

• Start early, lots of work to be done

