

1

Recitation lecture: problem set 2
● Theory part
● Practical part
● C specifics

Name, title of the presentation

2

Content of the archive

• src/ - contains C source files

• include/ - contains C header files

• vsl_programs/ - contains example VSL programs for
testing
– Contains a makefile to run your vslc
– ‘make’ to make all or ‘make <path>.ast to run on a single file

• ‘make’ – builds the the compiler as src/vslc
– Add ‘clean’ to remove intermediate files, or ‘purge’ to remove

binaries as well

3

Things to implement

• Scanner in src/scanner.l
– Needs to return all types of tokens

• Parser in src/parser.y
– Constructs syntax tree as tokens are received
– Matched text available through yytext and special variables $1, $2..

• Auxiliary functions in src/tree.c
– Construction and deletion of dynamically allocated nodes
– node_t struct defined in include/ir.h
– node_print is already implemented

4

Yacc and Lex

• Lex is a specification for scanner generators, flex is
one implementation

• Yacc is a specification for parser generators, bison is
one implementation

• Install: sudo apt install flex bison
– Assuming Ubuntu based OS or WSL distribution

5

Lex specifications

definitions
%%
regular expression { matching action }
…
%%
other code

• Regular C code can be embedded, enclosed between ‘%{’
and ‘%}’

• Helpful directives: yylineno and friends
• Code section may be practically empty, keeping logic

section in parser

6

Status of the scanner

• Three rules are already implemented
– {WHITESPACE}+ eliminates all whitespace.
– {COMMENT} eliminates comments (named regex).
– . sends catches all remaining characters and returns them one by

one.

• Symbolic names for multi-character tokens are
defined in a header generated from the %token
directive used in src/parser.y

• Add regex for remaining tokens

7

Token names

• Tokens are mostly named after their keywords

• Exception: BEGIN and END are named
OPENBLOCK and CLOSEBLOCK
– Flex macro BEGIN switches internal state: BEGIN(<new state>)

Want Yacc and Lex syntax highlighting? Recommend ‘yash’ for VS Code

8

Structure node_t

• Used to build the syntax tree

• Bit of tricky pointer acrobatics

9

The auxiliary functions

• Initializer function for node_t takes a node (pre-
allocated), type, data,n_children and a variable
amount of node_t objects (va-list)

• VA-list from stdarg.h (included in vslc.h) will have to
be read
– `…` syntax probably familiar from the printf/scanf function family

10

The auxiliary functions

• node_finalize and subtree_destroy
– Use subtree_destroy as a recursive destructor in order to free the

whole tree.

• All heap allocated objects need to be freed when
done.

• Valgrind is a useful tool to check for memory leaks

11

Why are arguments passed by
reference?
• Objects and arrays can be very large, wasteful to

copy into a function call.

• Pointers are always a 32/64 bit address.

• Passing allocated node_t* to initializer
– Could as well have allocated the node inside the function and

returned a pointer to the newly created object
– Convention to let the caller decide how the object is allocated

12

Yacc specifications

• Yacc has the same structure as Lex

• Rules are implemented similarly to the Backus-Naur form (more
examples in skeleton)
expr :

 expr ‘+’ expr { /* parsed an addition */ }
| expr ‘-’ expr { /* parsed a subtraction */ }
;

• $1, $2 etc refer to the n’th token in a production.
• $$ refers to the object returned by the production (type node_t*)
• `expr ‘+’ expr` $1 and $3 are node_t * objects representing the two

expressions
– All expr op expr will look identical in the syntax tree, remember to stash the operator

in the data field.

13

Status of the parser

• Most supporting structures
– Tokens
– Error handling

• Some dummy produtions
– These are in no way correct for the parser you are writing, but

serve as a demonstration of the Yacc syntax.

14

Bottom of the tree

• The smallest reductions like STRING and INTEGER
have just a token on r.h.s.

• $$ is a node_t but INTEGER is just a token

• The semantic rule has to create a leaf node
containing the data
– Parse the content of yytext
– The content of yytext will change as parsing continues, so

remember to copy the data. (functions to consider: strcpy, strdup,
sscanf, strtol)

15

Parsing data

• int64_t my_int = strtol(yytext, NULL, 10);
– Will parse a 64-bit integer (atoi is deprecated)

• Arguments are
– char *buffer ← where text is found

– char *end ← where translation stops (Not needed now)

– int base ← base (we use base 10 integers)

• char *data = strdup(yytext);
– Mild violation of “caller allocates” rule, but it’s a common exception.

An alternative is the more cumbersome
char *data = malloc (strlen(yytext)+1);
strcpy(data, yytext);

– $$->data = strdup(yytext);

16

VSL expressions

• The arithmetic expressions define an ambiguous sub-
grammar

• Instead of having to disambiguate the grammar, Yacc
supports precedence rules:
%left ‘+’ ‘-’
%left ‘*’ ‘/’
%nonassoc UMINUS

– Assign left associativity for binary operations, and assigns UMINUS the
highest precedence, while add/sub gets the lowest

• Same goes for if-else (dangling else problem)
%nonassoc IF THEN
%nonassoc ELSE

• Take a moment to appreciate this feature

17

How I would attack it

• Isolate the scanner
– The main function calls yyparse, comment it out and call yylex while

completing the scanner

• Test the auxiliary functions in main while getting
comfortable with them

• Connect back with the parser
– Reintroduce yyparse instead of yylex
– Add one production at the time, e.g. let program catch an integer, then

extend to a declaration, then a list etc in your preferred order

• Apply your preferred code style
– Your hand-in does not have to look like what was handed out, but please

be consistent in you coding style.

18

How I would attack it

• What you put in the data field will vary, the context of
what it contains is given by the node’s type

• Don’t get tempted to use void* as a character literal
(remember it is a pointer)
Dangerous: $$->data = (void*)’+’;
Better:
$$->data = (char *)malloc(1);
(char)$$->data = ‘+’;
...
char my_data = (char*)node->data;

19

Touch typing class

• One aim of this exercise is to get the hang of handling
trees in dynamic memory

• Once you get the idea, the rest is mainly a matter of
typing variations of a theme – large, but not
particularly difficult

• Secondary point: Just how quickly the complexity of a
language grows

• Tip: Macros can save you a lot of typing
#define MY_MACRO(x, y, z) do { \

do_something(x, y, z); \
while (false)

20

GL/HF

• Ask questions

• Good Luck

• Hopefully have a little fun as well

21

Looking forward

• The generated tree contains redundant information
– Left recursive productions make deep trees out of lists
– Expressions with all constants could be reduced to simple integers
– Etc.

• We will tidy up later
– Straight forward parsing keeps the parser code as simple as

possible and is OK for now
– entry field is currently unused. We will use this later for creating

symbol tables. It can be NULL for now

	PowerPoint Presentation
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

